Search results
Results from the WOW.Com Content Network
Hyperbolic space, developed independently by Nikolai Lobachevsky, János Bolyai and Carl Friedrich Gauss, is a geometric space analogous to Euclidean space, but such that Euclid's parallel postulate is no longer assumed to hold. Instead, the parallel postulate is replaced by the following alternative (in two dimensions):
A definition of a -hyperbolic space is then a geodesic metric space all of whose geodesic triangles are -slim. This definition is generally credited to Eliyahu Rips . Another definition can be given using the notion of a C {\displaystyle C} -approximate center of a geodesic triangle: this is a point which is at distance at most C {\displaystyle ...
For > the hyperbolic structure on a finite volume hyperbolic -manifold is unique by Mostow rigidity and so geometric invariants are in fact topological invariants. One of these geometric invariants used as a topological invariant is the hyperbolic volume of a knot or link complement, which can allow us to distinguish two knots from each other ...
Hyperbolic motions are often taken from inversive geometry: these are mappings composed of reflections in a line or a circle (or in a hyperplane or a hypersphere for hyperbolic spaces of more than two dimensions). To distinguish the hyperbolic motions, a particular line or circle is taken as the absolute.
However, the entire hyperbolic plane cannot be embedded into Euclidean space in this way, and various other models are more convenient for abstractly exploring hyperbolic geometry. There are four models commonly used for hyperbolic geometry: the Klein model , the Poincaré disk model , the Poincaré half-plane model , and the Lorentz or ...
A global geometry is a local geometry plus a topology. It follows that a topology alone does not give a global geometry: for instance, Euclidean 3-space and hyperbolic 3-space have the same topology but different global geometries. As stated in the introduction, investigations within the study of the global structure of the universe include:
Then n-dimensional hyperbolic space is a Riemannian space and distance or length can be defined as the square root of the scalar square. If the signature (+, −, −) is chosen, scalar square between distinct points on the hyperboloid will be negative, so various definitions of basic terms must be adjusted, which can be inconvenient.
In mathematics, hyperbolic complex space is a Hermitian manifold which is the equivalent of the real hyperbolic space in the context of complex manifolds. The complex hyperbolic space is a Kähler manifold , and it is characterised by being the only simply connected Kähler manifold whose holomorphic sectional curvature is constant equal to -1.