enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov's principle - Wikipedia

    en.wikipedia.org/wiki/Markov's_principle

    If constructive arithmetic is translated using realizability into a classical meta-theory that proves the -consistency of the relevant classical theory (for example, Peano arithmetic if we are studying Heyting arithmetic), then Markov's principle is justified: a realizer is the constant function that takes a realization that is not everywhere ...

  3. Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Markov_decision_process

    Value iteration starts at = and as a guess of the value function. It then iterates, repeatedly computing V i + 1 {\displaystyle V_{i+1}} for all states s {\displaystyle s} , until V {\displaystyle V} converges with the left-hand side equal to the right-hand side (which is the " Bellman equation " for this problem [ clarification needed ] ).

  4. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.

  5. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model. A Markov random field extends this property to two or more dimensions or to random variables defined for an interconnected network of items. [1] An example of a model for such a field is the Ising model.

  6. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    For example, a series of simple observations, such as a person's location in a room, can be interpreted to determine more complex information, such as in what task or activity the person is performing. Two kinds of Hierarchical Markov Models are the Hierarchical hidden Markov model [2] and the Abstract Hidden Markov Model. [3]

  7. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain. [8] If each of the m Poisson processes has rate λ i and the modulating continuous-time Markov has m × m transition rate matrix R , then the MAP representation is

  8. Causal Markov condition - Wikipedia

    en.wikipedia.org/wiki/Causal_Markov_condition

    The related Causal Markov (CM) condition states that, conditional on the set of all its direct causes, a node is independent of all variables which are not effects or direct causes of that node. [3] In the event that the structure of a Bayesian network accurately depicts causality , the two conditions are equivalent.

  9. Markov Chains and Mixing Times - Wikipedia

    en.wikipedia.org/wiki/Markov_Chains_and_Mixing_Times

    A family of Markov chains is said to be rapidly mixing if the mixing time is a polynomial function of some size parameter of the Markov chain, and slowly mixing otherwise. This book is about finite Markov chains, their stationary distributions and mixing times, and methods for determining whether Markov chains are rapidly or slowly mixing. [1] [4]