Search results
Results from the WOW.Com Content Network
The square of n (most easily calculated when n is between 26 and 74 inclusive) is (50 − n) 2 + 100(n − 25) In other words, the square of a number is the square of its difference from fifty added to one hundred times the difference of the number and twenty five. For example, to square 62: (−12) 2 + [(62-25) × 100] = 144 + 3,700 = 3,844
Legendre's three-square theorem states which numbers can be expressed as the sum of three squares; Jacobi's four-square theorem gives the number of ways that a number can be represented as the sum of four squares. For the number of representations of a positive integer as a sum of squares of k integers, see Sum of squares function.
In number theory, the sum of squares function is an arithmetic function that gives the number of representations for a given positive integer n as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the numbers being squared are counted as different.
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
For statistical inference, sums-of-squares can still be formed: the model sum-of-squares is ‖ ‖; the residual sum-of-squares is ‖ ‖. However, because H does not correspond to an ordinary least-squares fit (i.e. is not an orthogonal projection), these sums-of-squares no longer have (scaled, non-central) chi-squared distributions, and ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n× 1 vector of the ...