Search results
Results from the WOW.Com Content Network
Direct reduced iron (DRI), also called sponge iron, [1] is produced from the direct reduction of iron ore (in the form of lumps, pellets, or fines) into iron by a reducing gas which contains elemental carbon (produced from natural gas or coal) and/or hydrogen. When hydrogen is used as the reducing gas no carbon dioxide is produced.
Plants for the production of pre-reduced iron ore are known as direct reduction plants. The principle involves exposing iron ore to the reducing action of a high-temperature gas (around 1000 °C). This gas is composed of carbon monoxide and dihydrogen, the proportions of which depend on the production process.
Regardless of the driving force, the current density is found to be greatest at the conductor's surface, with a reduced magnitude deeper in the conductor. That decline in current density is known as the skin effect and the skin depth is a measure of the depth at which the current density falls to 1/e of its value near the surface. Over 98% of ...
Some considerations in this process include the screen material, the aperture size, shape and orientation, the amount of near sized particles, the addition of water, the amplitude and frequency of the vibrations, the angle of inclination, the presence of harmful materials, like steel and wood, and the size distribution of the particles.
The HIsarna ironmaking process is a direct reduced iron process for iron making in which iron ore is processed almost directly into liquid iron ().The process combines two process units, the Cyclone Converter Furnace (CCF) for ore melting and pre-reduction and a Smelting Reduction Vessel (SRV) where the final reduction stage to liquid iron takes place.
The effects of cold working may be reversed by annealing the material at high temperatures where recovery and recrystallization reduce the dislocation density. A material's work hardenability can be predicted by analyzing a stress–strain curve, or studied in context by performing hardness tests before and after a process. [8] [9]
Low-pressure phase diagram of pure iron. BCC is body centered cubic and FCC is face-centered cubic. Iron-carbon eutectic phase diagram, showing various forms of Fe x C y substances. Iron allotropes, showing the differences in structure. The alpha iron (α-Fe) is a body-centered cubic (BCC) and the gamma iron (γ-Fe) is a face-centered cubic (FCC).
Iron which has a carbon content greater than ~0.02% is known as steel. Steel which has a carbon content greater than ~0.25% can be direct-hardened by heating to around 600°C, and then quickly cooling, often by immersing in water or oil, known as quenching. Hardening is desirable for metal components because it gives increased strength and wear ...