enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/KuttaJoukowski_theorem

    Kutta–Joukowski theorem is an inviscid theory, but it is a good approximation for real viscous flow in typical aerodynamic applications. [2] Kutta–Joukowski theorem relates lift to circulation much like the Magnus effect relates side force (called Magnus force) to rotation. [3] However, the circulation here is not induced by rotation of the ...

  3. Circulation (physics) - Wikipedia

    en.wikipedia.org/wiki/Circulation_(physics)

    This is known as the Kutta–Joukowski theorem. [6] This equation applies around airfoils, where the circulation is generated by airfoil action; and around spinning objects experiencing the Magnus effect where the circulation is induced mechanically. In airfoil action, the magnitude of the circulation is determined by the Kutta condition. [6]

  4. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    Calculating the lift per unit span using Kutta–Joukowski requires a known value for the circulation. In particular, if the Kutta condition is met, in which the rear stagnation point moves to the airfoil trailing edge and attaches there for the duration of flight, the lift can be calculated theoretically through the conformal mapping method.

  5. Kutta condition - Wikipedia

    en.wikipedia.org/wiki/Kutta_condition

    When an airfoil is moving with an angle of attack, the starting vortex has been cast off and the Kutta condition has become established, there is a finite circulation of the air around the airfoil. The airfoil is generating lift, and the magnitude of the lift is given by the Kutta–Joukowski theorem. [5]: § 4.5

  6. Lifting-line theory - Wikipedia

    en.wikipedia.org/wiki/Lifting-line_theory

    Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a

  7. Nikolay Zhukovsky (scientist) - Wikipedia

    en.wikipedia.org/wiki/Nikolay_Zhukovsky_(scientist)

    He was also responsible for the eponymous water hammer equation used by civil engineers. He published a derivation for the maximum energy obtainable from a turbine in 1920, at the same time as German scientist Albert Betz. [3] This is known controversially as Betz's law, as this result was also derived by British scientist Frederick W. Lanchester.

  8. Martin Kutta - Wikipedia

    en.wikipedia.org/wiki/Martin_Kutta

    Martin Wilhelm Kutta (German:; 3 November 1867 – 25 December 1944) was a German mathematician. In 1901, he co-developed the Runge–Kutta method, used to solve ordinary differential equations numerically. He is also remembered for the Zhukovsky–Kutta aerofoil, the Kutta–Zhukovsky theorem and the Kutta condition in aerodynamics.

  9. Magnus effect - Wikipedia

    en.wikipedia.org/wiki/Magnus_effect

    The force on a rotating cylinder is an example of Kutta–Joukowski lift, [2] named after Martin Kutta and Nikolay Zhukovsky (or Joukowski), mathematicians who contributed to the knowledge of how lift is generated in a fluid flow. [3]