Search results
Results from the WOW.Com Content Network
The Eschweiler–Clarke reaction (also called the Eschweiler–Clarke methylation) is a chemical reaction whereby a primary (or secondary) amine is methylated using excess formic acid and formaldehyde. [1] [2] Reductive amination reactions such as this one will not produce quaternary ammonium salts, but instead will stop at the tertiary amine ...
Formaldehyde is readily oxidized by atmospheric oxygen into formic acid. For this reason, commercial formaldehyde is typically contaminated with formic acid. Formaldehyde can be hydrogenated into methanol. In the Cannizzaro reaction, formaldehyde and base react to produce formic acid and methanol, a disproportionation reaction.
The simplified chemical reaction is: NaCl + H 2 O + energy → NaOCl + H 2 [citation needed] That is, energy is added to sodium chloride (table salt) in water, producing sodium hypochlorite and hydrogen gas. Because the reaction takes place in an unpartitioned cell and NaOH is present in the same solution as the Cl 2: 2 NaCl + 2 H 2 O → 2 ...
At the anode (A), chloride (Cl −) is oxidized to chlorine. The ion-selective membrane (B) allows the counterion Na+ to freely flow across, but prevents anions such as hydroxide (OH −) and chloride from diffusing across. At the cathode (C), water is reduced to hydroxide and hydrogen gas. The net process is the electrolysis of an aqueous ...
The Blanc chloromethylation (also called the Blanc reaction) is the chemical reaction of aromatic rings with formaldehyde and hydrogen chloride to form chloromethyl arenes. The reaction is catalyzed by Lewis acids such as zinc chloride. [1] The reaction was discovered by Gustave Louis Blanc (1872-1927) in 1923. [2] [3] Blanc chloromethylation
With water and a protic acid such as sulfuric acid as the reaction medium and formaldehyde the reaction product is a 1,3-diol (3). When water is absent, the cationic intermediate loses a proton to give an allylic alcohol (4). With an excess of formaldehyde and a low reaction temperature the reaction product is a dioxane (5).
Gas stoichiometry is the quantitative relationship (ratio) between reactants and products in a chemical reaction with reactions that produce gases. Gas stoichiometry applies when the gases produced are assumed to be ideal, and the temperature, pressure, and volume of the gases are all known. The ideal gas law is used for these calculations.
Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.