enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson limit theorem - Wikipedia

    en.wikipedia.org/wiki/Poisson_limit_theorem

    In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions. [1] The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem

  3. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  4. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    Nowadays, it can be seen as a consequence of the central limit theorem since B(n, p) is a sum of n independent, identically distributed Bernoulli variables with parameter p. This fact is the basis of a hypothesis test , a "proportion z-test", for the value of p using x / n , the sample proportion and estimator of p , in a common test statistic .

  5. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    The central limit theorem (CLT) explains the ubiquitous occurrence of the normal distribution in nature, and this theorem, according to David Williams, "is one of the great results of mathematics." [11] The theorem states that the average of many independent and identically distributed random variables with finite variance tends towards a ...

  6. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    The formula in the definition of characteristic function allows us to compute φ when we know the distribution function F (or density f). If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used. Theorem.

  7. Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem

    Central limit theorem for directional statistics – Central limit theorem applied to the case of directional statistics; Delta method – to compute the limit distribution of a function of a random variable. Erdős–Kac theorem – connects the number of prime factors of an integer with the normal probability distribution

  8. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    An alternative version uses the fact that the Poisson distribution converges to a normal distribution by the Central Limit Theorem. [5]Since the Poisson distribution with parameter converges to a normal distribution with mean and variance , their density functions will be approximately the same:

  9. Poisson point process - Wikipedia

    en.wikipedia.org/wiki/Poisson_point_process

    A visual depiction of a Poisson point process starting. In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...