Search results
Results from the WOW.Com Content Network
The Luhn algorithm or Luhn formula, also known as the " modulus 10" or "mod 10" algorithm, named after its creator, IBM scientist Hans Peter Luhn, is a simple check digit formula used to validate a variety of identification numbers. It is described in US patent 2950048A, granted on 23 August 1960. [1]
Modulo 10 check digits in credit card account numbers, calculated by the Luhn algorithm. Also used in the Norwegian KID (customer identification number) numbers used in bank giros (credit transfer), Used in IMEI of mobile phones. Last check digit in EAN/UPC serialisation of Global Trade Identification Number . It applies to GTIN-8, GTIN-12 ...
The Luhn mod N algorithm is an extension to the Luhn algorithm (also known as mod 10 algorithm) that allows it to work with sequences of values in any even-numbered base. This can be useful when a check digit is required to validate an identification string composed of letters, a combination of letters and digits or any arbitrary set of N ...
Verhoeff had the goal of finding a decimal code—one where the check digit is a single decimal digit—which detected all single-digit errors and all transpositions of adjacent digits. At the time, supposed proofs of the nonexistence [ 6 ] of these codes made base-11 codes popular, for example in the ISBN check digit .
Hans Peter Luhn (July 1, 1896 – August 19, 1964) was a German-American [2] researcher in the field of computer science and Library & Information Science for IBM, and creator of the Luhn algorithm, KWIC (K ey W ords I n C ontext) indexing, and selective dissemination of information ("SDI"). His inventions have found applications in diverse ...
Essentially the algorithm figures out what the Luhn sum would be for the number sequence with out the check number. Then it determines what mod 10 of that number is. If mod 10 is 0, then the number already passes, so the check is 0. Otherwise, a value needs to be added so that the sum + check mod 10 will be zero.
Checksum. A checksum is a small-sized block of data derived from another block of digital data for the purpose of detecting errors that may have been introduced during its transmission or storage. By themselves, checksums are often used to verify data integrity but are not relied upon to verify data authenticity. [1]
Checksum schemes include parity bits, check digits, and longitudinal redundancy checks. Some checksum schemes, such as the Damm algorithm, the Luhn algorithm, and the Verhoeff algorithm, are specifically designed to detect errors commonly introduced by humans in writing down or remembering identification numbers.