Search results
Results from the WOW.Com Content Network
Epithelial–mesenchymal transition was first recognized as a feature of embryogenesis by Betty Hay in the 1980s. [ 1 ] [ 2 ] EMT, and its reverse process, MET ( mesenchymal-epithelial transition ) are critical for development of many tissues and organs in the developing embryo, and numerous embryonic events such as gastrulation , neural crest ...
For example, cancer cells undergo epithelial to mesenchymal transition (EMT) that plays important roles in their survival, proliferation, and development of resistance to therapeutic treatments, [2] [3] or switch to a phenotype that mimics stem cell-like features – the so-called Cancer Stem Cells (CSCs) or Tumour-initiating Cells.
Unlike epithelial cells – which are stationary and characterized by an apico-basal polarity with binding by a basal lamina, tight junctions, gap junctions, adherent junctions and expression of cell-cell adhesion markers such as E-cadherin, [4] mesenchymal cells do not make mature cell-cell contacts, can invade through the extracellular matrix, and express markers such as vimentin ...
Neural mesenchyme soon undergoes a mesenchymal–epithelial transition under the influence of WNT6 produced by ectoderm to form somites. [20] These structures will undergo a secondary EMT as the somite tissue migrates later in development to form structural connective tissue such as cartilage and skeletal muscle. [21]
Currently, three main theories have been proposed to explain the metastatic pathway of cancer: the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) hypothesis (1), the cancer stem cell hypothesis (2), and the macrophage–cancer cell fusion hybrid hypothesis (3).
AV epithelial-mesenchymal transition (EMT) Notch signaling is also important for the process of AV EMT , which is required for AV canal maturation. After the AV canal boundary formation, a subset of endocardial cells lining the AV canal are activated by signals emanating from the myocardium and by interendocardial signaling pathways to undergo ...
The stem cells in ERM can undergo an epithelial–mesenchymal transition and differentiate into diverse types of cells of mesodermal and ectodermal origin like bone, fat, cartilage and neuron-like cells. [2]
On day 16, epiblast cells that are next to the primitive streak experience epithelial-to-mesenchymal transformation as they ingress through the primitive streak. The first wave of epiblast cells takes over the hypoblast, which slowly becomes replaced by new cells that eventually constitute the definitive endoderm.