enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Accumulated local effects - Wikipedia

    en.wikipedia.org/wiki/Accumulated_local_effects

    High correlations between features can defeat the technique. [1] [3] ALE requires more and more uniformly distributed observations than PDP so that the conditional distribution can be reliably determined. The technique may produce inadequate results if the data is highly sparse, which is more common with high-dimensional data (curse of ...

  3. Multicollinearity - Wikipedia

    en.wikipedia.org/wiki/Multicollinearity

    In addition to causing numerical problems, imperfect collinearity makes precise estimation of variables difficult. In other words, highly correlated variables lead to poor estimates and large standard errors. As an example, say that we notice Alice wears her boots whenever it is raining and that there are only puddles when it rains.

  4. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. [1] It has been used in many fields including econometrics, chemistry, and engineering. [2]

  5. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2] to avoid the curse of dimensionality, [3]

  6. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    The reason for doing this is the correlation of the trees in an ordinary bootstrap sample: if one or a few features are very strong predictors for the response variable (target output), these features will be selected in many of the B trees, causing them to become correlated. An analysis of how bagging and random subspace projection contribute ...

  7. Correlation clustering - Wikipedia

    en.wikipedia.org/wiki/Correlation_clustering

    Correlation clustering also relates to a different task, where correlations among attributes of feature vectors in a high-dimensional space are assumed to exist guiding the clustering process. These correlations may be different in different clusters, thus a global decorrelation cannot reduce this to traditional (uncorrelated) clustering.

  8. Supervised learning - Wikipedia

    en.wikipedia.org/wiki/Supervised_learning

    The number of features should not be too large, because of the curse of dimensionality; but should contain enough information to accurately predict the output. Determine the structure of the learned function and corresponding learning algorithm. For example, one may choose to use support-vector machines or decision trees. Complete the design.

  9. BCPNN - Wikipedia

    en.wikipedia.org/wiki/Bcpnn

    The BCPNN learning rule was derived from Bayes rule and is Hebbian such that neural units with activity correlated over time get excitatory connections between them whereas anti-correlation generates inhibition and lack of correlation gives zero connections. The independence assumptions are the same as in naïve Bayes formalism.