Search results
Results from the WOW.Com Content Network
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
Genetic regulatory circuits (also referred to as transcriptional regulatory circuits) is a concept that evolved from the Operon Model discovered by François Jacob and Jacques Monod. [1] [2] [3] They are functional clusters of genes that impact each other's expression through inducible transcription factors and cis-regulatory elements. [4] [5]
Changes in the regulation of gene networks are a common mechanism for prokaryotic evolution.An example of the effects of different regulatory environments for homologous proteins is the DNA-binding protein OmpR, which is involved in response to osmotic stress in E. coli but is involved in response to acidic environments in the close relative Salmonella Typhimurium.
The concept of tinkering, or more precisely, the notion of bricolage, serves as a theoretical framework for analyzing various phenomena characterized by a common underlying process: the opportunistic rearrangement and recombination of existing elements. Jacob and Monod also won the Nobel Prize in 1965 for his work on the lac operon. [4]
Monod joined the Pasteur Institute in 1943 and Jacob in 1949. The experimental system ultimately used by Jacob and Monod was a common bacterium, E. coli, but the basic regulatory concept (described in the Lac operon article) that was discovered by Jacob and Monod is fundamental to cellular regulation for all organisms.
In biology, evolution is the process of change in all forms of life over generations, and evolutionary biology is the study of how evolution occurs. Biological populations evolve through genetic changes that correspond to changes in the organisms ' observable traits .
By expressing models in terms of the instantaneous rates of change we can avoid estimating a large numbers of parameters for each branch on a phylogenetic tree (or each comparison if the analysis involves many pairwise sequence comparisons). The models described on this page describe the evolution of a single site within a set of sequences.
Monod later put aside his work on diauxic growth and focused on the lac operon model of gene expression, which led to a Nobel prize. Diauxie occurs because organisms use operons or multiple sets of genes to control differently the expression of enzymes needed to metabolize the different nutrients or sugars they encounter. If an organism ...