Search results
Results from the WOW.Com Content Network
The AMSU consists of two functionally independent units, AMSU-A and AMSU-B. The AMSU-B is a line-scan instrument designed to measure scene radiance in five channels, ranging from 89 GHz to 183 GHz for the computation of atmospheric water vapor profiles. The AMSU-B is a total power system with a FOV of 1.1° at half-power points.
The second in a series of second-generation meteorological research and development satellites, Nimbus 2 was designed to serve as a stabilized, Earth-oriented platform for the testing of advanced meteorological sensor systems and the collecting of meteorological data.
The Joint Polar Satellite System (JPSS) is the latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites. JPSS will provide the global environmental data used in numerical weather prediction models for forecasts, and scientific data used for climate
The spacecraft were designed to serve as stabilized, Earth-oriented platforms for the testing of advanced systems to sense and collect atmospheric science data. Seven Nimbus spacecraft have been launched into near-polar, Sun-synchronous orbits beginning with Nimbus 1 on August 28, 1964. On board the Nimbus satellites are various instrumentation ...
McIDAS, the "Man computer Interactive Data Access System", is a weather forecasting tool developed at the University of Wisconsin–Madison in the 1970s and used continually to this day. In its early incarnations, it was widely used to generate graphics for television stations, but today is used primarily by the NOAA and related agencies.
Data is provided at multiple "levels" of processing, from raw satellite measurements to best-estimate global precipitation maps using combinations of all the constellation observations and other meteorological data. All data from the mission is made freely available to the public on NASA websites. [7]
CIMSS serves as an international center for research on the interpretation and uses of operational and experimental satellite observations and remote sensing data acquired from aircraft and the ground. These data are applied to a wide variety of atmospheric and oceanographic studies and evaluated for their potential operational utility.
Wind power in Ohio has a long history. As of 2016, Ohio had 545 megawatts (MW) of utility-scale wind power installations, responsible for generating 1.1% of the state's electricity. [ 1 ] Over 1000 MW more were under construction or pending approval. [ 2 ]