Search results
Results from the WOW.Com Content Network
Carbon fiber reinforced silicon carbide matrix composites and Silicon carbide fiber reinforced silicon carbide matrix composites are considered reusable materials because silicon carbide is a hard material with a low erosion and it forms a silica glass layer during oxidation which prevents further oxidation of inner material. However, above a ...
The high cost of carbon fiber is mitigated by the material's unsurpassed strength-to-weight ratio, and low weight is essential for high-performance automobile racing. Race-car manufacturers have also developed methods to give carbon fiber pieces strength in a certain direction, making it strong in a load-bearing direction, but weak in ...
Like in fiber-reinforced composites, the size dispersion of the carbon nanotubes significantly affects the final properties of the composite. Stress-strain studies of single-walled carbon nanotubes in a polyethylene matrix using molecular dynamics showed that long carbon nanotubes lead to an increase in tensile stiffness and strength due to the ...
Fracture surface of a fiber-reinforced ceramic composed of SiC fibers and SiC matrix. The fiber pull-out mechanism shown is the key to CMC properties. CMC shaft sleeves. In materials science ceramic matrix composites (CMCs) are a subgroup of composite materials and a subgroup of ceramics.
Reinforced carbon-carbon (RCC) consists of carbon fiber-reinforced graphite, and is used structurally in high-temperature applications. The fiber also finds use in filtration of high-temperature gases, as an electrode with high surface area and impeccable corrosion resistance, and as an anti-static component. Molding a thin layer of carbon ...
The Advanced composites industry, or Advanced composite materials industry, is characterized by the use of expensive, high-performance resin systems and high-strength, high-stiffness fiber reinforcement. The aerospace industry, including military and commercial aircraft of all types, is the major customer for advanced composites.
Phenolic resins, originally developed in the late 19th century and, regarded as the first truly synthetic polymer types, are often referred to as the “work-horse of thermosetting resins”. They are characterised by high bonding strength, dimensional stability and creep resistance at elevated temperatures, and frequently combined with co ...
Thermosetting plastics are generally stronger than thermoplastic materials due to the three-dimensional network of bonds (crosslinking), and are also better suited to high-temperature applications up to the decomposition temperature since they keep their shape as strong covalent bonds between polymer chains cannot be broken easily. The higher ...