enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Features from accelerated segment test - Wikipedia

    en.wikipedia.org/wiki/Features_from_accelerated...

    The high-speed test for rejecting non-corner points is operated by examining 4 example pixels, namely pixel 1, 9, 5 and 13. Because there should be at least 12 contiguous pixels that are whether all brighter or darker than the candidate corner, so there should be at least 3 pixels out of these 4 example pixels that are all brighter or darker than the candidate corner.

  3. Kanade–Lucas–Tomasi feature tracker - Wikipedia

    en.wikipedia.org/wiki/Kanade–Lucas–Tomasi...

    In computer vision, the Kanade–Lucas–Tomasi (KLT) feature tracker is an approach to feature extraction. It is proposed mainly for the purpose of dealing with the problem that traditional image registration techniques are generally costly. KLT makes use of spatial intensity information to direct the search for the position that yields the ...

  4. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    An object is recognized in a new image by individually comparing each feature from the new image to this database and finding candidate matching features based on Euclidean distance of their feature vectors. From the full set of matches, subsets of keypoints that agree on the object and its location, scale, and orientation in the new image are ...

  5. Integral channel feature - Wikipedia

    en.wikipedia.org/wiki/Integral_channel_feature

    Linear filters: This is a simple method for generating channels. There are variety of linear filters that allow us to capture different aspects of an image. A few examples are Gabor filter and difference of Gaussians (DoG). Gabor filter and DoG capture edge information and textured-ness of an image. Below is a sample code for implementing DoG ...

  6. Feature (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Feature_(computer_vision)

    Feature detection includes methods for computing abstractions of image information and making local decisions at every image point whether there is an image feature of a given type at that point or not. The resulting features will be subsets of the image domain, often in the form of isolated points, continuous curves or connected regions.

  7. Template matching - Wikipedia

    en.wikipedia.org/wiki/Template_matching

    These vectors are extracted from the network and used as the features of the image. Feature extraction using deep neural networks, like CNNs, has proven extremely effective has become the standard in state-of-the-art template matching algorithms. [6] This feature-based approach is often more robust than the template-based approach described below.

  8. Speeded up robust features - Wikipedia

    en.wikipedia.org/wiki/Speeded_up_robust_features

    The goal of a descriptor is to provide a unique and robust description of an image feature, e.g., by describing the intensity distribution of the pixels within the neighbourhood of the point of interest. Most descriptors are thus computed in a local manner, hence a description is obtained for every point of interest identified previously.

  9. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    This idea is motivated by the fact that some binary patterns occur more commonly in texture images than others. A local binary pattern is called uniform if the binary pattern contains at most two 0-1 or 1-0 transitions. For example, 00010000 (2 transitions) is a uniform pattern, but 01010100 (6 transitions) is not.