Search results
Results from the WOW.Com Content Network
The tennis racket theorem or intermediate axis theorem, is a kinetic phenomenon of classical mechanics which describes the movement of a rigid body with three distinct principal moments of inertia. It has also been dubbed the Dzhanibekov effect , after Soviet cosmonaut Vladimir Dzhanibekov , who noticed one of the theorem's logical consequences ...
In 1985 he demonstrated stable and unstable rotation of a T-handle nut from the orbit, subsequently named the Dzhanibekov effect. The effect had been long known from the tennis racket theorem, which says that rotation about an object's intermediate principal axis is unstable while in free fall. In 1985 he was promoted to the rank of major ...
The following other wikis use this file: Usage on ar.wikipedia.org مبرهنة مضرب التنس; Usage on de.wikipedia.org Dschanibekow-Effekt
Nielsen–Schreier theorem (free groups) Niven's theorem (number theory) No-broadcasting theorem (quantum information theory) No-cloning theorem (quantum computation) No-communication theorem (quantum information theory) No-deleting theorem (quantum information theory) No free lunch in search and optimization (computational complexity theory)
As described in the tennis racket theorem, rotation of an object around its first or third principal axis is stable, while rotation around its second principal axis (or intermediate axis) is not. The motion is simplified in the case of an axisymmetric body, in which the moment of inertia is the same about two of the principal axes.
Separately, game theory has played a role in online algorithms; in particular, the k-server problem, which has in the past been referred to as games with moving costs and request-answer games. [125] Yao's principle is a game-theoretic technique for proving lower bounds on the computational complexity of randomized algorithms , especially online ...
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .
This fundamental result, proved also in a different way by Gromov, [27] is now called the Eliashberg-Gromov theorem, and is one of the first manifestations of symplectic rigidity. In 1990 he discovered a complete topological characterization of Stein manifolds of complex dimension greater than 2.