enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    The Bode plot for a linear, time-invariant system with transfer function (being the complex frequency in the Laplace domain) consists of a magnitude plot and a phase plot. The Bode magnitude plot is the graph of the function | H ( s = j ω ) | {\displaystyle |H(s=j\omega )|} of frequency ω {\displaystyle \omega } (with j {\displaystyle j ...

  3. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    The following MATLAB code will plot the root locus of the closed-loop transfer function as varies using the described manual method as well as the rlocus built-in function: % Manual method K_array = ( 0 : 0.1 : 220 ). ' ; % .' is a transpose.

  4. Phase margin - Wikipedia

    en.wikipedia.org/wiki/Phase_margin

    Bode plot illustrating phase margin. In electronic amplifiers, the phase margin (PM) is the difference between the phase lag φ (< 0) and -180°, for an amplifier's output signal (relative to its input) at zero dB gain - i.e. unity gain, or that the output signal has the same amplitude as the input.

  5. Hopsan - Wikipedia

    en.wikipedia.org/wiki/HOPSAN

    The plotting tool is capable of generating frequency spectrums and performing frequency analysis to generate Bode diagrams and Nyquist plots. Hopsan models can be exported to Simulink. Plot data can be exported to XML , CSV , gnuplot and Matlab .

  6. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position. The assumption behind Figure 5 is that the frequency f 0 dB lies between the lowest pole at f 1 = 1/(2πτ 1) and the second pole at f 2 = 1/(2πτ 2). As indicated in ...

  7. Bode's sensitivity integral - Wikipedia

    en.wikipedia.org/wiki/Bode's_sensitivity_integral

    Bode's sensitivity integral, discovered by Hendrik Wade Bode, is a formula that quantifies some of the limitations in feedback control of linear parameter invariant systems. Let L be the loop transfer function and S be the sensitivity function. In the diagram, P is a dynamical process that has a transfer function P(s).

  8. Roll-off - Wikipedia

    en.wikipedia.org/wiki/Roll-off

    It is usual to measure roll-off as a function of logarithmic frequency; consequently, the units of roll-off are either decibels per decade (dB/decade), where a decade is a tenfold increase in frequency, or decibels per octave (dB/8ve), where an octave is a twofold increase in frequency.

  9. Cutoff frequency - Wikipedia

    en.wikipedia.org/wiki/Cutoff_frequency

    Magnitude transfer function of a bandpass filter with lower 3 dB cutoff frequency f 1 and upper 3 dB cutoff frequency f 2 Bode plot (a logarithmic frequency response plot) of any first-order low-pass filter with a normalized cutoff frequency at =1 and a unity gain (0 dB) passband.