enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Like distinct-degree factorization algorithm, Rabin's algorithm [5] is based on the Lemma stated above. Distinct-degree factorization algorithm tests every d not greater than half the degree of the input polynomial. Rabin's algorithm takes advantage that the factors are not needed for considering fewer d. Otherwise, it is similar to distinct ...

  3. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Miller–Rabin_primality_test

    Miller–Rabin primality test. The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a ...

  4. Irreducibility (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Irreducibility_(mathematics)

    Irreducibility (mathematics) In mathematics, the concept of irreducibility is used in several ways. A polynomial over a field may be an irreducible polynomial if it cannot be factored over that field. In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial.

  5. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    But if the test shows that there is no rational root, then the polynomial may be irreducible, in which case casus irreducibilis applies, cos(θ ⁄ 5) and sin(θ ⁄ 5) are not constructible, the angle θ ⁄ 5 is not constructible, and the angle θ is not classically pentasectible. An example of this is when one attempts to construct a 25-gon ...

  6. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    For a concrete example one can take R = Z[i√5], p = 1 + i√5, a = 1 − i√5, q = 2, b = 3. In this example the polynomial 3 + 2 X + 2 X 2 (obtained by dividing the right hand side by q = 2 ) provides an example of the failure of the irreducibility statement (it is irreducible over R , but reducible over its field of fractions Q [ i √5] ).

  7. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    If the rational root test finds no rational solutions, then the only way to express the solutions algebraically uses cube roots. But if the test finds a rational solution r, then factoring out (x – r) leaves a quadratic polynomial whose two roots, found with the quadratic formula, are the remaining two roots of the cubic, avoiding cube roots.

  8. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), and various wheel sieves [2] are most common.

  9. Baillie–PSW primality test - Wikipedia

    en.wikipedia.org/wiki/Baillie–PSW_primality_test

    The Baillie–PSW primality test is a probabilistic or possibly deterministic primality testing algorithm that determines whether a number is composite or is a probable prime. It is named after Robert Baillie, Carl Pomerance, John Selfridge, and Samuel Wagstaff. The Baillie–PSW test is a combination of a strong Fermat probable prime test to ...