enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    On L 1 (R) ∩ L 2 (R), this extension agrees with original Fourier transform defined on L 1 (R), thus enlarging the domain of the Fourier transform to L 1 (R) + L 2 (R) (and consequently to L p (R) for 1 ≤ p ≤ 2). Plancherel's theorem has the interpretation in the sciences that the Fourier transform preserves the energy of the original ...

  3. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1. The mathematical rigor of the delta function was disputed until Laurent Schwartz developed the theory of distributions, where it is defined as a linear form acting on functions.

  4. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    One of the more popular multidimensional transforms is the Fourier transform, which converts a signal from a time/space domain representation to a frequency domain representation. [1] The discrete-domain multidimensional Fourier transform (FT) can be computed as follows:

  5. Fourier optics - Wikipedia

    en.wikipedia.org/wiki/Fourier_optics

    Fourier optics begins with the homogeneous, scalar wave equation (valid in source-free regions): (,) = where is the speed of light and u(r,t) is a real-valued Cartesian component of an electromagnetic wave propagating through a free space (e.g., u(r, t) = E i (r, t) for i = x, y, or z where E i is the i-axis component of an electric field E in the Cartesian coordinate system).

  6. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    In contrast, the most obvious trigonometric interpolation polynomial is the one in which the frequencies range from 0 to (instead of roughly / to + / as above), similar to the inverse DFT formula. This interpolation does not minimize the slope, and is not generally real-valued for real x n {\displaystyle x_{n}} ; its use is a common mistake.

  7. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    The DTFT is the mathematical dual of the time-domain Fourier series. Thus, a convergent periodic summation in the frequency domain can be represented by a Fourier series, whose coefficients are samples of a related continuous time function:

  8. Fourier–Bessel series - Wikipedia

    en.wikipedia.org/wiki/Fourier–Bessel_series

    The Fourier–Bessel series of a function f(x) with a domain of [0, b] satisfying f(b) = 0. Bessel function for (i) = and (ii) =.: [,] is the representation of that function as a linear combination of many orthogonal versions of the same Bessel function of the first kind J α, where the argument to each version n is differently scaled, according to [1] [2] ():= (,) where u α,n is a root ...

  9. Frequency domain - Wikipedia

    en.wikipedia.org/wiki/Frequency_domain

    The inverse Fourier transform converts the frequency-domain function back to the time-domain function. A spectrum analyzer is a tool commonly used to visualize electronic signals in the frequency domain. A frequency-domain representation may describe either a static function or a particular time period of a dynamic function (signal or system).