enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elementary charge - Wikipedia

    en.wikipedia.org/wiki/Elementary_charge

    The elementary charge, usually denoted by e, is a fundamental physical constant, defined as the electric charge carried by a single proton (+1 e) or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 e. [2] [a]

  3. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    Electric charge is a conserved property: the net charge of an isolated system, the quantity of positive charge minus the amount of negative charge, cannot change. Electric charge is carried by subatomic particles. In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms ...

  4. Proton - Wikipedia

    en.wikipedia.org/wiki/Proton

    A proton is a stable subatomic particle, symbol p, H +, or 1 H + with a positive electric charge of +1 e (elementary charge).Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio).

  5. Orders of magnitude (charge) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(charge)

    The elementary charge e, i.e. the negative charge on a single electron or the positive charge on a single proton [3] 10 −18: atto-(aC) ~ 1.8755 × 10 −18 C: Planck charge [4] [5] 10 −17: 1.473 × 10 −17 C (92 e) – Positive charge on a uranium nucleus (derived: 92 x 1.602 × 10 −19 C) 10 −16: 1.344 × 10 −16 C: Charge on a dust ...

  6. Bethe formula - Wikipedia

    en.wikipedia.org/wiki/Bethe_formula

    where c is the speed of light and ε 0 the vacuum permittivity, =, e and m e the electron charge and rest mass respectively. Stopping Power of Aluminum for Protons versus proton energy, and the Bethe formula without (red) and with corrections (blue) Here, the electron density of the material can be calculated by

  7. Marcus theory - Wikipedia

    en.wikipedia.org/wiki/Marcus_theory

    In theoretical chemistry, Marcus theory is a theory originally developed by Rudolph A. Marcus, starting in 1956, to explain the rates of electron transfer reactions – the rate at which an electron can move or jump from one chemical species (called the electron donor) to another (called the electron acceptor). [1]

  8. Arrow pushing - Wikipedia

    en.wikipedia.org/wiki/Arrow_pushing

    Arrow pushing or electron pushing is a technique used to describe the progression of organic chemistry reaction mechanisms. [1] It was first developed by Sir Robert Robinson . In using arrow pushing, "curved arrows" or "curly arrows" are drawn on the structural formulae of reactants in a chemical equation to show the reaction mechanism .

  9. Charge radius - Wikipedia

    en.wikipedia.org/wiki/Charge_radius

    The rms charge radius is a measure of the size of an atomic nucleus, particularly the proton distribution. The proton radius is about one femtometre = 10 −15 metre. It can be measured by the scattering of electrons by the nucleus. Relative changes in the mean squared nuclear charge distribution can be precisely measured with atomic spectroscopy.