enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    If the errors do not follow a multivariate normal distribution, generalized linear models may be used to relax assumptions about Y and U. The general linear model incorporates a number of different statistical models: ANOVA, ANCOVA, MANOVA, MANCOVA, ordinary linear regression, t-test and F-test. The general linear model is a generalization of ...

  3. Multivariate probit model - Wikipedia

    en.wikipedia.org/wiki/Multivariate_probit_model

    In statistics and econometrics, the multivariate probit model is a generalization of the probit model used to estimate several correlated binary outcomes jointly. For example, if it is believed that the decisions of sending at least one child to public school and that of voting in favor of a school budget are correlated (both decisions are binary), then the multivariate probit model would be ...

  4. Multivariate statistics - Wikipedia

    en.wikipedia.org/wiki/Multivariate_statistics

    Multivariate regression attempts to determine a formula that can describe how elements in a vector of variables respond simultaneously to changes in others. For linear relations, regression analyses here are based on forms of the general linear model. Some suggest that multivariate regression is distinct from multivariable regression, however ...

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    For example, a researcher is building a linear regression model using a dataset that contains 1000 patients (). If the researcher decides that five observations are needed to precisely define a straight line ( m {\displaystyle m} ), then the maximum number of independent variables ( n {\displaystyle n} ) the model can support is 4, because

  6. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    Hence the multivariate normal distribution is an example of the class of elliptical distributions. The directions of the principal axes of the ellipsoids are given by the eigenvectors of the covariance matrix Σ {\displaystyle {\boldsymbol {\Sigma }}} .

  7. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    The design matrix contains data on the independent variables (also called explanatory variables), in a statistical model that is intended to explain observed data on a response variable (often called a dependent variable). The theory relating to such models uses the design matrix as input to some linear algebra : see for example linear regression.

  8. Errors-in-variables model - Wikipedia

    en.wikipedia.org/wiki/Errors-in-variables_model

    Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.

  9. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.