Search results
Results from the WOW.Com Content Network
In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...
In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color. Graph coloring is a special case of graph labeling.
The greedy coloring algorithm, when applied to a given ordering of the vertices of a graph G, considers the vertices of the graph in sequence and assigns each vertex its first available color, the minimum excluded value for the set of colors used by its neighbors. Different vertex orderings may lead this algorithm to use different numbers of ...
The numbers indicate the order in which the greedy algorithm colors the vertices. In graph theory, the Grundy number or Grundy chromatic number of an undirected graph is the maximum number of colors that can be used by a greedy coloring strategy that considers the vertices of the graph in sequence and assigns each vertex its first available ...
Greedy algorithms determine the minimum number of coins to give while making change. These are the steps most people would take to emulate a greedy algorithm to represent 36 cents using only coins with values {1, 5, 10, 20}. The coin of the highest value, less than the remaining change owed, is the local optimum.
In graph theory, Brooks' theorem states a relationship between the maximum degree of a graph and its chromatic number. According to the theorem, in a connected graph in which every vertex has at most Δ neighbors, the vertices can be colored with only Δ colors, except for two cases, complete graphs and cycle graphs of odd length, which require ...
Conflict-free coloring; Critical graph; D. De Bruijn–ErdÅ‘s theorem (graph theory) Defective coloring; ... Graph coloring game; Greedy coloring;
The number of edges in a crown graph is the pronic number n(n – 1). Its achromatic number is n: one can find a complete coloring by choosing each pair {u i, v i} as one of the color classes. [1] Crown graphs are symmetric and distance-transitive. Archdeacon et al. (2004) describe partitions of the edges of a crown graph into equal-length cycles.