Search results
Results from the WOW.Com Content Network
The ways in which data mining can be used can in some cases and contexts raise questions regarding privacy, legality, and ethics. [28] In particular, data mining government or commercial data sets for national security or law enforcement purposes, such as in the Total Information Awareness Program or in ADVISE, has raised privacy concerns. [29 ...
Process mining is a family of techniques for analyzing event data to understand and improve operational processes. Part of the fields of data science and process management, process mining is generally built on logs that contain case id, a unique identifier for a particular process instance; an activity, a description of the event that is occurring; a timestamp; and sometimes other information ...
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Legal-project management meets traditional project management particularly in the area of electronic discovery. [5] E-discovery in particular has a set of regularized, repeatable, and measurable practices and has been subject to great cost-control pressure for the past few years, making it a specialty within law amenable to traditional project management.
The modern conception of data science as an independent discipline is sometimes attributed to William S. Cleveland. [23] In 2014, the American Statistical Association's Section on Statistical Learning and Data Mining changed its name to the Section on Statistical Learning and Data Science, reflecting the ascendant popularity of data science. [24]
A review and critique of data mining process models in 2009 called the CRISP-DM the "de facto standard for developing data mining and knowledge discovery projects." [16] Other reviews of CRISP-DM and data mining process models include Kurgan and Musilek's 2006 review, [8] and Azevedo and Santos' 2008 comparison of CRISP-DM and SEMMA. [9]
Data management comprises all disciplines related to handling data as a valuable resource, it is the practice of managing an organization's data so it can be analyzed for decision making. [ 1 ] Concept
KNIME (/ n aɪ m / ⓘ), the Konstanz Information Miner, [2] is a free and open-source data analytics, reporting and integration platform.KNIME integrates various components for machine learning and data mining through its modular data pipelining "Building Blocks of Analytics" concept.