Ad
related to: solvent evaporation rate calculation
Search results
Results from the WOW.Com Content Network
In reality, the evaporation of solvents limits the extent of liquid penetration in a porous layer and thus, for the meaningful modelling of inkjet printing physics it is appropriate to utilise models which account for evaporation effects in limited capillary penetration.
In chemistry, solvent effects are the influence of a solvent on chemical reactivity or molecular associations. Solvents can have an effect on solubility, stability and reaction rates and choosing the appropriate solvent allows for thermodynamic and kinetic control over a chemical reaction.
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
Multiple-effect evaporation commonly uses sensible heat in the condensate to preheat liquor to be flashed. In practice the design liquid flow paths can be somewhat complicated in order to extract the most recoverable heat and to obtain the highest evaporation rates from the equipment.
After the system reaches equilibrium and the rate of evaporation matches the rate of condensation, the vapor pressure can be measured. Increasing the temperature increases the amount of vapor that is formed and thus the vapor pressure.
The Hertz–Knudsen equation describes the non-dissociative adsorption of a gas molecule on a surface by expressing the variation of the number of molecules impacting on the surfaces per unit of time as a function of the pressure of the gas and other parameters which characterise both the gas phase molecule and the surface: [1] [2]
In the case of an equilibrium solid, such as a crystal, this can be defined as the pressure when the rate of sublimation of a solid matches the rate of deposition of its vapor phase. For most solids this pressure is very low, but some notable exceptions are naphthalene , dry ice (the vapor pressure of dry ice is 5.73 MPa (831 psi, 56.5 atm) at ...
Evaporation is the elimination of the solvent in form of vapor from a solution. For most evaporation systems, the solvent is water and the heat is provided by steam condensation. [4] In a forced circulation evaporation liquid is constantly circulated through the system.
Ad
related to: solvent evaporation rate calculation