Search results
Results from the WOW.Com Content Network
UV-Vis can be used to monitor structural changes in DNA. [8] UV-Vis spectroscopy is routinely used in analytical chemistry for the quantitative determination of diverse analytes or sample, such as transition metal ions, highly conjugated organic compounds, and biological macromolecules. Spectroscopic analysis is commonly carried out in ...
With the aid of these rules the UV absorption maximum can be predicted, for example in these two compounds: [8] In the compound on the left, the base value is 214 nm (a heteroannular diene). This diene group has 4 alkyl substituents (labeled 1,2,3,4) and the double bond in one ring is exocyclic to the other (adding 5 nm for an exocyclic double ...
With this source, Turner's group obtained an energy resolution of 0.02 eV. Turner referred to the method as "molecular photoelectron spectroscopy", now usually "ultraviolet photoelectron spectroscopy" or UPS. As compared to XPS, UPS is limited to energy levels of valence electrons, but measures them more accurately.
The electronic transitions in organic compounds and some other compounds can be determined by ultraviolet–visible spectroscopy, provided that transitions in the ultraviolet (UV) or visible range of the electromagnetic spectrum exist for the compound.
It is the link between the electrochemistry and the UV-Vis absorption spectroscopy. [3] Devices to conduct the radiation beam: lenses, mirrors and/or optical fibers. The last ones conduct electromagnetic radiation over great distances with hardly any losses.
Ultraviolet–visible spectroscopy (UV–vis) can distinguish between enantiomers by showing a distinct Cotton effect for each isomer. UV–vis spectroscopy sees only chromophores , so other molecules must be prepared for analysis by chemical addition of a chromophore such as anthracene .
In modern spectrographs in the UV, visible, and near-IR spectral ranges, the spectrum is generally given in the form of photon number per unit wavelength (nm or μm), wavenumber (μm −1, cm −1), frequency (THz), or energy (eV), with the units indicated by the abscissa.
The cuvette is filled with sample, light is passed through the sample and intensity readings are taken. The slope spectroscopy technique can be applied using the same methods as in absorption spectroscopy. With the advent of accurate linear stages, variable pathlength absorption spectroscopy is easily applied experimentally.