enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Abelian group - Wikipedia

    en.wikipedia.org/wiki/Abelian_group

    The fundamental theorem of finite abelian groups states that every finite abelian group can be expressed as the direct sum of cyclic subgroups of prime-power order; it is also known as the basis theorem for finite abelian groups. Moreover, automorphism groups of cyclic groups are examples of abelian groups. [13]

  3. Abelian variety - Wikipedia

    en.wikipedia.org/wiki/Abelian_variety

    In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry ...

  4. Grothendieck group - Wikipedia

    en.wikipedia.org/wiki/Grothendieck_group

    Given a commutative monoid M, "the most general" abelian group K that arises from M is to be constructed by introducing inverse elements to all elements of M. Such an abelian group K always exists; it is called the Grothendieck group of M. It is characterized by a certain universal property and can also be concretely constructed from M.

  5. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    If the operation additionally has an identity element, we have a commutative monoid; An abelian group, or commutative group is a group whose group operation is commutative. [16] A commutative ring is a ring whose multiplication is commutative. (Addition in a ring is always commutative.) [18] In a field both addition and multiplication are ...

  6. Module (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Module_(mathematics)

    In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring.The concept of a module also generalizes the notion of an abelian group, since the abelian groups are exactly the modules over the ring of integers.

  7. Cayley table - Wikipedia

    en.wikipedia.org/wiki/Cayley_table

    The Cayley table tells us whether a group is abelian. Because the group operation of an abelian group is commutative, a group is abelian if and only if its Cayley table's values are symmetric along its diagonal axis. The group {1, −1} above and the cyclic group of order 3 under ordinary multiplication are both examples of abelian groups, and ...

  8. Commutator subgroup - Wikipedia

    en.wikipedia.org/wiki/Commutator_subgroup

    The commutator subgroup is important because it is the smallest normal subgroup such that the quotient group of the original group by this subgroup is abelian. In other words, / is abelian if and only if contains the commutator subgroup of . So in some sense it provides a measure of how far the group is from being abelian; the larger the ...

  9. Tor functor - Wikipedia

    en.wikipedia.org/wiki/Tor_functor

    Moreover, for a fixed ring R, Tor is a functor in each variable (from R-modules to abelian groups). For a commutative ring R and R-modules A and B, Tor R i (A, B) is an R-module (using that A ⊗ R B is an R-module in this case). For a non-commutative ring R, Tor R i (A, B) is only an abelian group, in general.