enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.

  3. Optimal binary search tree - Wikipedia

    en.wikipedia.org/wiki/Optimal_binary_search_tree

    In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-balanced binary tree, [1] is a binary search tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities). Optimal BSTs are generally divided into two types: static and dynamic.

  4. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    To insert a new element, search the tree to find the leaf node where the new element should be added. Insert the new element into that node with the following steps: If the node contains fewer than the maximum allowed number of elements, then there is room for the new element. Insert the new element in the node, keeping the node's elements ordered.

  5. Treap - Wikipedia

    en.wikipedia.org/wiki/Treap

    To search for a given key value, apply a standard binary search algorithm in a binary search tree, ignoring the priorities. To insert a new key x into the treap, generate a random priority y for x. Binary search for x in the tree, and create a new node at the leaf position where the binary search determines a node for x should exist.

  6. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:

  7. Splay tree - Wikipedia

    en.wikipedia.org/wiki/Splay_tree

    To insert a value x into a splay tree: Insert x as with a normal binary search tree. Perform a splay on x. As a result, the newly inserted node x becomes the root of the tree. Alternatively: Use the split operation to split the tree at the value of x to two sub-trees: S and T.

  8. Skip list - Wikipedia

    en.wikipedia.org/wiki/Skip_list

    To index the skip list and find the i'th value, traverse the skip list while counting down the widths of each traversed link. Descend a level whenever the upcoming width would be too large. For example, to find the node in the fifth position (Node 5), traverse a link of width 1 at the top level.

  9. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    Note that the function does not use keys, which means that the sequential structure is completely recorded by the binary search tree’s edges. For traversals without change of direction, the ( amortised ) average complexity is O ( 1 ) , {\displaystyle {\mathcal {O}}(1),} because a full traversal takes 2 n − 2 {\displaystyle 2n-2} steps for a ...