Search results
Results from the WOW.Com Content Network
Terahertz spectroscopy detects and controls properties of matter with electromagnetic fields that are in the frequency range between a few hundred gigahertz and several terahertz (abbreviated as THz). In many-body systems, several of the relevant states have an energy difference that matches with the energy of a THz photon. Therefore, THz ...
In physics, terahertz time-domain spectroscopy (THz-TDS) is a spectroscopic technique in which the properties of matter are probed with short pulses of terahertz radiation. The generation and detection scheme is sensitive to the sample's effect on both the amplitude and the phase of the terahertz radiation. Fourier transform of the above pulse.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The technical details of coherent optical modules were proprietary for many years, but have recently attracted efforts by multi-source agreement (MSA) groups and a standards development organizations such as the Optical Internetworking Forum. Coherent optical modules can either plug into a front panel socket or an on-board socket.
Terahertz waves lie mostly at the far end of the infrared band, the longest ones in the microwave band. Terahertz radiation – also known as submillimeter radiation, terahertz waves, tremendously high frequency [1] (THF), T-rays, T-waves, T-light, T-lux or THz – consists of electromagnetic waves within the International Telecommunication Union-designated band of frequencies from 0.1 to 10 ...
Far-infrared laser or terahertz laser (FIR laser, THz laser) is a laser with output wavelength in between 30 and 1000 μm (frequency 0.3-10 THz), in the far infrared or terahertz frequency band of the electromagnetic spectrum. FIR lasers have application in terahertz spectroscopy, terahertz imaging as well in
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
This diagram describes the four-wave mixing interaction between frequencies f 1, f 2, f 3 and f 4. When three frequencies (f 1 , f 2 , and f 3 ) interact in a nonlinear medium, they give rise to a fourth frequency (f 4 ) which is formed by the scattering of the incident photons, producing the fourth photon.