enow.com Web Search

  1. Ad

    related to: unit cube examples geometry problems

Search results

  1. Results from the WOW.Com Content Network
  2. Prince Rupert's cube - Wikipedia

    en.wikipedia.org/wiki/Prince_Rupert's_cube

    In geometry, Prince Rupert's cube is the largest cube that can pass through a hole cut through a unit cube without splitting it into separate pieces. Its side length is approximately 1.06, 6% larger than the side length 1 of the unit cube through which it passes. The problem of finding the largest square that lies entirely within a unit cube is ...

  3. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    The problem of finding the smallest ball such that k disjoint open unit balls may be packed inside it has a simple and complete answer in n-dimensional Euclidean space if +, and in an infinite-dimensional Hilbert space with no restrictions. It is worth describing in detail here, to give a flavor of the general problem.

  4. Doubling the cube - Wikipedia

    en.wikipedia.org/wiki/Doubling_the_cube

    In algebraic terms, doubling a unit cube requires the construction of a line segment of length x, where x 3 = 2; in other words, x = , the cube root of two. This is because a cube of side length 1 has a volume of 1 3 = 1, and a cube of twice that volume (a volume of 2) has a side length of the cube root of 2.

  5. Unit cube - Wikipedia

    en.wikipedia.org/wiki/Unit_cube

    The term unit cube or unit hypercube is also used for hypercubes, or "cubes" in n-dimensional spaces, for values of n other than 3 and edge length 1. [ 1 ] [ 2 ] Sometimes the term "unit cube" refers in specific to the set [0, 1] n of all n -tuples of numbers in the interval [0, 1].

  6. Hilbert's third problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_third_problem

    Dehn's proof is an instance in which abstract algebra is used to prove an impossibility result in geometry. Other examples are doubling the cube and trisecting the angle. Two polyhedra are called scissors-congruent if the first can be cut into finitely many polyhedral pieces that can be reassembled to yield the second. Any two scissors ...

  7. Sphere packing in a cube - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing_in_a_cube

    In geometry, sphere packing in a cube is a three-dimensional sphere packing problem with the objective of packing spheres inside a cube. It is the three-dimensional equivalent of the circle packing in a square problem in two dimensions. The problem consists of determining the optimal packing of a given number of spheres inside the cube.

  8. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    A cube with unit side length is the canonical unit of volume in three-dimensional space, relative to which other solid objects are measured. The cube can be represented in many ways, one of which is the graph known as the cubical graph. It can be constructed by using the Cartesian product of graphs. The cube was discovered in antiquity.

  9. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Doubling the cube is the construction, using only a straightedge and compass, of the edge of a cube that has twice the volume of a cube with a given edge. This is impossible because the cube root of 2, though algebraic, cannot be computed from integers by addition, subtraction, multiplication, division, and taking square roots.

  1. Ad

    related to: unit cube examples geometry problems