Search results
Results from the WOW.Com Content Network
Device for both vaginal ultrasonography and abdominal ultrasonography Transvaginal ultrasonography to check the location of an intrauterine device (IUD). The examination can be performed by transabdominal ultrasonography, generally with a full bladder which acts as an acoustic window to achieve better visualization of pelvis organs, or by transvaginal ultrasonography with a specifically ...
The International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) recommends that pregnant women have routine obstetric ultrasounds between 18 weeks' and 22 weeks' gestational age (the anatomy scan) in order to confirm pregnancy dating, to measure the fetus so that growth abnormalities can be recognized quickly later in pregnancy ...
Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g., distances and velocities) or to generate an informative audible sound.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
When generating a 3D volume, the ultrasound data can be collected in four common ways by a sonographer: Freehand, which involves tilting the probe and capturing a series of ultrasound images and recording the transducer orientation for each slice. Mechanically, where the internal linear probe tilt is handled by a motor inside the probe.
Ultrasound image showing the liver, gallbladder and common bile duct. Medical ultrasound uses high frequency broadband sound waves in the megahertz range that are reflected by tissue to varying degrees to produce (up to 3D) images. This is commonly associated with imaging the fetus in pregnant women. Uses of ultrasound are much broader, however.
Synthetic aperture ultrasound (SAU) imaging is an advanced form of imaging technology used to form high-resolution images in biomedical ultrasound systems. Ultrasound imaging has become an important and popular medical imaging method, as it is safer and more economical than computer tomography (CT) and magnetic resonance imaging (MRI).
Photoacoustic imaging or optoacoustic imaging is a biomedical imaging modality based on the photoacoustic effect.Non-ionizing laser pulses are delivered into biological tissues and part of the energy will be absorbed and converted into heat, leading to transient thermoelastic expansion and thus wideband (i.e. MHz) ultrasonic emission.