enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Seebeck coefficient - Wikipedia

    en.wikipedia.org/wiki/Seebeck_coefficient

    The Seebeck coefficient (also known as thermopower, [1] thermoelectric power, and thermoelectric sensitivity) of a material is a measure of the magnitude of an induced thermoelectric voltage in response to a temperature difference across that material, as induced by the Seebeck effect. [2]

  3. Thermoelectric generator - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_generator

    The Maritime Applied Physics Corporation in Baltimore, Maryland is developing a thermoelectric generator to produce electric power on the deep-ocean offshore seabed using the temperature difference between cold seawater and hot fluids released by hydrothermal vents, hot seeps, or from drilled geothermal wells. A high-reliability source of ...

  4. Thermoelectric cooling - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_cooling

    Thermoelectric cooling uses the Peltier effect to create a heat flux at the junction of two different types of materials. A Peltier cooler, heater, or thermoelectric heat pump is a solid-state active heat pump which transfers heat from one side of the device to the other, with consumption of electrical energy, depending on the direction of the current.

  5. Thermoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_effect

    The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. [1] A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, heat is transferred from one side to the other, creating a temperature ...

  6. Thermoelectric materials - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_materials

    The efficiency of a thermoelectric device for electricity generation is given by , defined as =.. The maximum efficiency of a thermoelectric device is typically described in terms of its device figure of merit where the maximum device efficiency is approximately given by [7] = + ¯ + ¯ +, where is the fixed temperature at the hot junction, is the fixed temperature at the surface being cooled ...

  7. Heat transfer physics - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_physics

    Relating the thermoelectric coefficients to the microscopic transport equations for j e and q, the thermal, electric, and thermoelectric properties are calculated. Thus, k e increases with the electrical conductivity σe and temperature T , as the Wiedemann–Franz law presents [ k e /( σ e T e ) = (1/3)( πk B / e c ) 2 = 2.44 × 10 −8 W-Ω ...

  8. Thermal power station - Wikipedia

    en.wikipedia.org/wiki/Thermal_power_station

    The makeup water in a 500 MWe plant amounts to perhaps 120 US gallons per minute (7.6 L/s) to replace water drawn off from the boiler drums for water purity management, and to also offset the small losses from steam leaks in the system. The feed water cycle begins with condensate water being pumped out of the condenser after traveling through ...

  9. Onsager reciprocal relations - Wikipedia

    en.wikipedia.org/wiki/Onsager_reciprocal_relations

    The basic thermodynamic potential is internal energy.In a simple fluid system, neglecting the effects of viscosity, the fundamental thermodynamic equation is written: = + where U is the internal energy, T is temperature, S is entropy, P is the hydrostatic pressure, V is the volume, is the chemical potential, and M mass.