enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dual norm - Wikipedia

    en.wikipedia.org/wiki/Dual_norm

    The Frobenius norm defined by ‖ ‖ = = = | | = ⁡ = = {,} is self-dual, i.e., its dual norm is ‖ ‖ ′ = ‖ ‖.. The spectral norm, a special case of the induced norm when =, is defined by the maximum singular values of a matrix, that is, ‖ ‖ = (), has the nuclear norm as its dual norm, which is defined by ‖ ‖ ′ = (), for any matrix where () denote the singular values ...

  3. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  4. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    The concept of unit circle (the set of all vectors of norm 1) is different in different norms: for the 1-norm, the unit circle is a square oriented as a diamond; for the 2-norm (Euclidean norm), it is the well-known unit circle; while for the infinity norm, it is an axis-aligned square.

  5. Normalized solution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Normalized_solution...

    A common method of finding normalized solutions is through variational methods, i.e., finding the maxima and minima of the corresponding functional with the prescribed norm. Thus, we can find the weak solution of the equation. Moreover, if it satisfies the constraint, it's a normalized solution. [3]

  6. Reproducing kernel Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Reproducing_kernel_Hilbert...

    However, there are RKHSs in which the norm is an L 2-norm, such as the space of band-limited functions (see the example below). An RKHS is associated with a kernel that reproduces every function in the space in the sense that for every x {\displaystyle x} in the set on which the functions are defined, "evaluation at x {\displaystyle x} " can be ...

  7. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    Frequently used examples include the Schatten p-norms, with p = 1 or 2. For example, matrix regularization with a Schatten 1-norm, also called the nuclear norm, can be used to enforce sparsity in the spectrum of a matrix. This has been used in the context of matrix completion when the matrix in question is believed to have a restricted rank. [2]

  8. Hilbert matrix - Wikipedia

    en.wikipedia.org/wiki/Hilbert_matrix

    Hilbert (1894) introduced the Hilbert matrix to study the following question in approximation theory: "Assume that I = [a, b], is a real interval.Is it then possible to find a non-zero polynomial P with integer coefficients, such that the integral

  9. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    Then J 1 and J 2 are similar and have the same spectrum, including algebraic multiplicities of the eigenvalues. The procedure outlined in the previous paragraph can be used to determine the structure of these matrices. Since the rank of a matrix is preserved by similarity transformation, there is a bijection between the Jordan blocks of J 1 and ...