enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    The Hermitian Laplacian matrix is a key tool in this context, as it is used to analyze the spectra of mixed graphs. [4] The Hermitian-adjacency matrix of a mixed graph is another important concept, as it is a Hermitian matrix that plays a role in studying the energies of mixed graphs. [5]

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    For a Hermitian matrix, the norm squared of the jth component of a normalized eigenvector can be calculated using only the matrix eigenvalues and the eigenvalues of the corresponding minor matrix, |, | = (()) (), where is the submatrix formed by removing the jth row and column from the original matrix.

  4. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    In the QR algorithm for a Hermitian matrix (or any normal matrix), the orthonormal eigenvectors are obtained as a product of the Q matrices from the steps in the algorithm. [11] (For more general matrices, the QR algorithm yields the Schur decomposition first, from which the eigenvectors can be obtained by a backsubstitution procedure. [13])

  5. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    In the special case of ⁠ ⁠ being a normal matrix, and thus also square, the spectral theorem ensures that it can be unitarily diagonalized using a basis of eigenvectors, and thus decomposed as ⁠ = ⁠ for some unitary matrix ⁠ ⁠ and diagonal matrix ⁠ ⁠ with complex elements ⁠ ⁠ along the diagonal.

  6. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  7. Rayleigh quotient - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_quotient

    In mathematics, the Rayleigh quotient [1] (/ ˈ r eɪ. l i /) for a given complex Hermitian matrix and nonzero vector is defined as: [2] [3] (,) =. For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugate transpose to the usual transpose ′.

  8. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    As an example, the identity matrix commutes with all matrices, which between them do not all commute. If the set of matrices considered is restricted to Hermitian matrices without multiple eigenvalues, then commutativity is transitive, as a consequence of the characterization in terms of eigenvectors.

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    For a normal matrix A (and only for a normal matrix), the eigenvectors can also be made orthonormal (=) and the eigendecomposition reads as =. In particular all unitary , Hermitian , or skew-Hermitian (in the real-valued case, all orthogonal , symmetric , or skew-symmetric , respectively) matrices are normal and therefore possess this property.