Search results
Results from the WOW.Com Content Network
One can obtain explicit formulas for the above expressions in the form of determinants, by considering the first n of Newton's identities (or it counterparts for the complete homogeneous polynomials) as linear equations in which the elementary symmetric functions are known and the power sums are unknowns (or vice versa), and apply Cramer's rule ...
Cantor–Bernstein–Schroeder theorem (set theory, cardinal numbers) Cantor's intersection theorem (real analysis) Cantor's isomorphism theorem (order theory) Cantor's theorem (set theory, Cantor's diagonal argument) Carathéodory–Jacobi–Lie theorem (symplectic topology) Carathéodory's existence theorem (ordinary differential equations)
Proofs That Really Count: the Art of Combinatorial Proof is an undergraduate-level mathematics book on combinatorial proofs of mathematical identies.That is, it concerns equations between two integer-valued formulas, shown to be equal either by showing that both sides of the equation count the same type of mathematical objects, or by finding a one-to-one correspondence between the different ...
An archetypal double counting proof is for the well known formula for the number () of k-combinations (i.e., subsets of size k) of an n-element set: = (+) ().Here a direct bijective proof is not possible: because the right-hand side of the identity is a fraction, there is no set obviously counted by it (it even takes some thought to see that the denominator always evenly divides the numerator).
In mathematics, the algebra of sets, not to be confused with the mathematical structure of an algebra of sets, defines the properties and laws of sets, the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions ...
In general, the transpose of a continuous linear map : is the linear map : ′ ′ (′):= ′, or equivalently, it is the unique map satisfying ′, = (′), for all and all ′ ′ (the prime symbol in ′ does not denote a derivative of any kind; it merely indicates that ′ is an element of the continuous dual space ′).
Proof without words of the Nicomachus theorem (Gulley (2010)) that the sum of the first n cubes is the square of the n th triangular number. In mathematics, a proof without words (or visual proof) is an illustration of an identity or mathematical statement which can be demonstrated as self-evident by a diagram without any accompanying explanatory text.
In the left hand sides of the following identities, L is the L eft most set and R is the R ight most set. Whenever necessary, both L and R should be assumed to be subsets of some universe set X , so that L ∁ := X ∖ L and R ∁ := X ∖ R . {\displaystyle L^{\complement }:=X\setminus L{\text{ and }}R^{\complement }:=X\setminus R.}