Search results
Results from the WOW.Com Content Network
The definition of a point of closure of a set is closely related to the definition of a limit point of a set.The difference between the two definitions is subtle but important – namely, in the definition of a limit point of a set , every neighbourhood of must contain a point of other than itself, i.e., each neighbourhood of obviously has but it also must have a point of that is not equal to ...
set-valued function with a closed graph. If F : X → 2 Y is a set-valued function between topological spaces X and Y then the following are equivalent: F has a closed graph (in X × Y); (definition) the graph of F is a closed subset of X × Y; and if Y is compact and Hausdorff then we may add to this list:
Closed set – Complement of an open subset; Closure (topology) – All points and limit points in a subset of a topological space; Limit of a sequence – Value to which tends an infinite sequence; Limit point of a set – Cluster point in a topological space
Kakutani fixed-point theorem – Fixed-point theorem for set-valued functions; Open mapping theorem (functional analysis) – Condition for a linear operator to be open; Ursescu theorem – Generalization of closed graph, open mapping, and uniform boundedness theorem; Webbed space – Space where open mapping and closed graph theorems hold
Convex hull (red) of a polygon (yellow). The usual set closure from topology is a closure operator. Other examples include the linear span of a subset of a vector space, the convex hull or affine hull of a subset of a vector space or the lower semicontinuous hull ¯ of a function : {}, where is e.g. a normed space, defined implicitly (¯) = ¯, where is the epigraph of a function .
Closeness is a basic concept in topology and related areas in mathematics.Intuitively, we say two sets are close if they are arbitrarily near to each other. The concept can be defined naturally in a metric space where a notion of distance between elements of the space is defined, but it can be generalized to topological spaces where we have no concrete way to measure distances.
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.
The set of all open intervals forms a base or basis for the topology, meaning that every open set is a union of some collection of sets from the base. In particular, this means that a set is open if there exists an open interval of non zero radius about every point in the set. More generally, the Euclidean spaces R n can be given a topology.