Search results
Results from the WOW.Com Content Network
where p i = momentum of particle i, F ij = force on particle i by particle j, and F E = resultant external force (due to any agent not part of system). Particle i does not exert a force on itself. Torque. Torque τ is also called moment of a force, because it is the rotational analogue to force: [8]
In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces. [ 1 ]
A single force acting at any point O′ of a rigid body can be replaced by an equal and parallel force F acting at any given point O and a couple with forces parallel to F whose moment is M = Fd, d being the separation of O and O′. Conversely, a couple and a force in the plane of the couple can be replaced by a single force, appropriately ...
Newton's second law states that the rate of change of momentum of a body is proportional to the resultant force acting on the body and is in the same direction. Mathematically, F=ma (force = mass x acceleration). Newton's third law states that all forces occur in pairs, and these two forces are equal in magnitude and opposite in direction.
Judicious selection of a coordinate system can make defining the vectors simpler when writing the equations of motion or statics. The x direction may be chosen to point down the ramp in an inclined plane problem, for example. In that case the friction force only has an x component, and the normal force only has a y component.
When more than two forces are involved, the geometry is no longer a parallelogram, but the same principles apply to a polygon of forces. The resultant force due to the application of a number of forces can be found geometrically by drawing arrows for each force. The parallelogram of forces is a graphical manifestation of the addition of vectors.
Graphical placing of the resultant force. Resultant force and torque replaces the effects of a system of forces acting on the movement of a rigid body. An interesting special case is a torque-free resultant, which can be found as follows: Vector addition is used to find the net force; Use the equation to determine the point of application with ...
(This formula is used for example in describing the measuring principle of a dasymeter and of hydrostatic weighing.) Example: If you drop wood into water, buoyancy will keep it afloat. Example: A helium balloon in a moving car. When increasing speed or driving in a curve, the air moves in the opposite direction to the car's acceleration.