enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron cross section - Wikipedia

    en.wikipedia.org/wiki/Neutron_cross_section

    In nuclear physics, the concept of a neutron cross section is used to express the likelihood of interaction between an incident neutron and a target nucleus. The neutron cross section σ can be defined as the area in cm 2 for which the number of neutron-nuclei reactions taking place is equal to the product of the number of incident neutrons that would pass through the area and the number of ...

  3. Neutron detection - Wikipedia

    en.wikipedia.org/wiki/Neutron_detection

    Devices coated with natural Gd have also been explored, mainly because of its large thermal neutron microscopic cross section of 49,000 barns. [37] [38] However, the Gd(n,γ) reaction products of interest are mainly low energy conversion electrons, mostly grouped around 70 keV. Consequently, discrimination between neutron induced events and ...

  4. Neutron activation analysis - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation_analysis

    The neutron flux from such a reactor is in the order of 10 12 neutrons cm −2 s −1. [1] The type of neutrons generated are of relatively low kinetic energy (KE), typically less than 0.5 eV. These neutrons are termed thermal neutrons. Upon irradiation, a thermal neutron interacts with the target nucleus via a non-elastic collision, causing ...

  5. Inverse beta decay - Wikipedia

    en.wikipedia.org/wiki/Inverse_beta_decay

    where 511 keV is the electron and positron rest energy, E vis is the visible energy from the reaction, and ⁠ ¯ ⁠ is the antineutrino kinetic energy. After the prompt positron annihilation , the neutron undergoes neutron capture on an element in the detector, producing a delayed flash of 2.22 MeV if captured on a proton. [ 4 ]

  6. Neutron activation - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation

    In this sense, neutron activation is a non-destructive analysis method. Neutron activation analysis can be done in situ. For example, aluminium (Al-27) can be activated by capturing relatively low-energy neutrons to produce the isotope Al-28, which decays with a half-life of 2.3 minutes with a decay energy of 4.642 MeV. [15]

  7. Nuclear cross section - Wikipedia

    en.wikipedia.org/wiki/Nuclear_cross_section

    Nuclear cross sections are used in determining the nuclear reaction rate, and are governed by the reaction rate equation for a particular set of particles (usually viewed as a "beam and target" thought experiment where one particle or nucleus is the "target", which is typically at rest, and the other is treated as a "beam", which is a projectile with a given energy).

  8. List of neutrino experiments - Wikipedia

    en.wikipedia.org/wiki/List_of_neutrino_experiments

    Los Alamos Neutron Science Center: 2019- CHANDLER: Carbon Hydrogen AntiNeutrino Detector with a Lithium Enhanced Raghavan-optical-lattice R ν e: ν e + p → e + + n: CC WLS Plastic Scintillating Cubes and Lithium-6-loaded Zinc Sulfide Sheets Scintillation 1.8 MeV North Anna, Virginia, US June 2017- CLEAN: Cryogenic Low-Energy Astrophysics ...

  9. Cross section (physics) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(physics)

    Cross sections can be computed for atomic collisions but also are used in the subatomic realm. For example, in nuclear physics a "gas" of low-energy neutrons collides with nuclei in a reactor or other nuclear device, with a cross section that is energy-dependent and hence also with well-defined mean free path between collisions.