Search results
Results from the WOW.Com Content Network
The reduction of nitroaromatics is conducted on an industrial scale. [1] Many methods exist, such as: Catalytic hydrogenation using: Raney nickel [2] or palladium-on-carbon, [3] [4] [5] platinum(IV) oxide, or Urushibara nickel. [6] Iron in acidic media. [7] [8] [9] Sodium hydrosulfite [10] Sodium sulfide (or hydrogen sulfide and base ...
A classic example is the reaction of salicylic acid with a mixture of nitric and sulfuric acid to form picric acid. The nitration of the 2 position involves the loss of CO 2 as the leaving group. Desulfonation in which a sulfonyl group is substituted by a proton is a common example. See also Hayashi rearrangement.
Pyridine and poly(4-vinyl) pyridine have been shown to form conducting molecular wires with remarkable polyenimine structure on UV irradiation, a process which accounts for at least some of the visible light absorption by aged pyridine samples. These wires have been theoretically predicted to be both highly efficient electron donors and ...
In organic chemistry, the Bohlmann–Rahtz pyridine synthesis is a reaction that generates substituted pyridines in two steps, first a condensation reaction between an enamine and an ethynylketone to form an aminodiene intermediate, which after heat-induced E/Z isomerization undergoes a cyclodehydration to yield 2,3,6-trisubstituted pyridines.
It is the conjugate acid of pyridine. Many related cations are known involving substituted pyridines, e.g. picolines, lutidines, collidines. They are prepared by treating pyridine with acids. [3] As pyridine is often used as an organic base in chemical reactions, pyridinium salts are produced in many acid-base reactions.
Synthesis of nucleosides involves the coupling of a nucleophilic, heterocyclic base with an electrophilic sugar. The silyl-Hilbert-Johnson (or Vorbrüggen) reaction, which employs silylated heterocyclic bases and electrophilic sugar derivatives in the presence of a Lewis acid, is the most common method for forming nucleosides in this manner.
The rule states that with the addition of a protic acid HX or other polar reagent to an asymmetric alkene, the acid hydrogen (H) or electropositive part gets attached to the carbon with more hydrogen substituents, and the halide (X) group or electronegative part gets attached to the carbon with more alkyl substituents.
With secondary amines and not primary amines the Zincke reaction takes on a different shape forming so-called Zincke aldehydes in which the pyridine ring is ring-opened with the terminal iminium group hydrolyzed to an aldehyde: [4] Zincke aldehydes. This variation has been applied in the synthesis of novel indoles: [11] Zincke aldehydes Kearney ...