Search results
Results from the WOW.Com Content Network
Tukey's range test, also known as Tukey's test, Tukey method, Tukey's honest significance test, or Tukey's HSD (honestly significant difference) test, [1] is a single-step multiple comparison procedure and statistical test.
A "statistically significant" difference between two proportions is understood to mean that, given the data, it is likely that there is a difference in the population proportions. However, this difference might be too small to be meaningful—the statistically significant result does not tell us the size of the difference.
To determine if there is a significant difference between two means with equal sample sizes, the Newman–Keuls method uses a formula that is identical to the one used in Tukey's range test, which calculates the q value by taking the difference between two sample means and dividing it by the standard error:
The actual difference is not usually a good way to compare the numbers, in particular because it depends on the unit of measurement. For instance, 1 m is the same as 100 cm , but the absolute difference between 2 and 1 m is 1 while the absolute difference between 200 and 100 cm is 100, giving the impression of a larger difference. [ 4 ]
The concordance correlation coefficient is nearly identical to some of the measures called intra-class correlations.Comparisons of the concordance correlation coefficient with an "ordinary" intraclass correlation on different data sets found only small differences between the two correlations, in one case on the third decimal. [2]
There is significant differences among sample averages; The observed differences among sample averages could not be reasonably caused by random chance itself; The result is statistically significant; Note that when there are only two groups for the one-way ANOVA F-test, = where t is the Student's statistic.
In numerical analysis, catastrophic cancellation [1] [2] is the phenomenon that subtracting good approximations to two nearby numbers may yield a very bad approximation to the difference of the original numbers.
The two-sample Hodges–Lehmann statistic is an estimate of a location-shift type difference between two populations. For two sets of data with m and n observations, the set of two-element sets made of them is their Cartesian product, which contains m × n pairs of points (one from each set); each such pair defines one difference of values.