enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    When S is finite, its completion is also finite, and has the smallest number of elements among all finite complete lattices containing S. [ 12 ] The partially ordered set S is join-dense and meet-dense in the Dedekind–MacNeille completion; that is, every element of the completion is a join of some set of elements of S , and is also the meet ...

  3. Dedekind-infinite set - Wikipedia

    en.wikipedia.org/wiki/Dedekind-infinite_set

    A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers. [1] A simple example is , the set of natural numbers.

  4. Structure theorem for finitely generated modules over a ...

    en.wikipedia.org/wiki/Structure_theorem_for...

    However, over a Dedekind domain the ideal class group is the only obstruction, and the structure theorem generalizes to finitely generated modules over a Dedekind domain with minor modifications. There is still a unique torsion part, with a torsionfree complement (unique up to isomorphism), but a torsionfree module over a Dedekind domain is no ...

  5. Dedekind group - Wikipedia

    en.wikipedia.org/wiki/Dedekind_group

    The most familiar (and smallest) example of a Hamiltonian group is the quaternion group of order 8, denoted by Q 8. Dedekind and Baer have shown (in the finite and respectively infinite order case) that every Hamiltonian group is a direct product of the form G = Q 8 × B × D , where B is an elementary abelian 2-group , and D is a torsion ...

  6. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    A set X is Dedekind-infinite if there exists a proper subset Y of X with |X| = |Y|, and Dedekind-finite if such a subset does not exist. The finite cardinals are just the natural numbers, in the sense that a set X is finite if and only if |X| = |n| = n for some natural number n. Any other set is infinite.

  7. Charles Sanders Peirce - Wikipedia

    en.wikipedia.org/wiki/Charles_Sanders_Peirce

    In the same paper Peirce gave, years before Dedekind, the first purely cardinal definition of a finite set in the sense now known as "Dedekind-finite", and implied by the same stroke an important formal definition of an infinite set (Dedekind-infinite), as a set that can be put into a one-to-one correspondence with one of its proper subsets.

  8. Linear model - Wikipedia

    en.wikipedia.org/wiki/Linear_model

    An example of a linear time series model is an autoregressive moving average model.Here the model for values {} in a time series can be written in the form = + + = + =. where again the quantities are random variables representing innovations which are new random effects that appear at a certain time but also affect values of at later times.

  9. Arithmetic surface - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_surface

    In more detail, an arithmetic surface (over the Dedekind domain ) is a scheme with a morphism: with the following properties: is integral, normal, excellent, flat and of finite type over and the generic fiber is a non-singular, connected projective curve over () and for other in (),