enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of planar symmetry groups - Wikipedia

    en.wikipedia.org/wiki/List_of_planar_symmetry_groups

    This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane: 2 families of rosette groups – 2D point groups; 7 frieze groups – 2D line ...

  3. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    Plane equation in normal form. In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space. A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimal thin.

  4. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).

  5. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions ( theorems ) from these.

  6. Plane symmetry - Wikipedia

    en.wikipedia.org/wiki/Plane_symmetry

    A plane symmetry is a symmetry of a pattern in the Euclidean plane: that is, a transformation of the plane that carries any direction lines to lines and preserves many different distances. [1] If one has a pattern in the plane, the set of plane symmetries that preserve the pattern forms a group.

  7. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    The Euclidean group can be seen as the symmetry group of the space itself, and contains the group of symmetries of any figure (subset) of that space. A Euclidean isometry can be direct or indirect , depending on whether it preserves the handedness of figures.

  8. Symmetry (geometry) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(geometry)

    The most common group of transforms applied to objects are termed the Euclidean group of "isometries", which are distance-preserving transformations in space commonly referred to as two-dimensional or three-dimensional (i.e., in plane geometry or solid geometry Euclidean spaces).

  9. Uniform tiling - Wikipedia

    en.wikipedia.org/wiki/Uniform_tiling

    In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra; these can be considered uniform tilings of the sphere.