Search results
Results from the WOW.Com Content Network
The main parameter characterizing transition is the Reynolds number. Transition is often described as a process proceeding through a series of stages. Transitional flow can refer to transition in either direction, that is laminar–turbulent transitional or turbulent–laminar transitional flow.
A bypass transition is a laminar–turbulent transition in a fluid flow over a surface. It occurs when a laminar boundary layer transitions to a turbulent one through some secondary instability mode, bypassing some of the pre-transitional events that typically occur in a natural laminar–turbulent transition. [a]
In the field of fluid dynamics the point at which the boundary layer changes from laminar to turbulent is called the transition point.Where and how this transition occurs depends on the Reynolds number, the pressure gradient, pressure fluctuations due to sound, surface vibration, the initial turbulence level of the flow, boundary layer suction, surface heat flows, and surface roughness.
Conventionally, = 2.59 (Blasius boundary layer) is typical of laminar flows, while = 1.3 - 1.4 is typical of turbulent flows near the laminar-turbulent transition. [16] For turbulent flows near separation, 2.7. [17] The dividing line defining laminar-transitional and transitional-turbulent values is dependent on a number of factors so it is not ...
The flow in between will begin to transition from laminar to turbulent and then back to laminar at irregular intervals, called intermittent flow. This is due to the different speeds and conditions of the fluid in different areas of the pipe's cross-section, depending on other factors such as pipe roughness and flow uniformity.
When water leaves a tap without an aerator with little force, it first exhibits laminar flow, but as acceleration by the force of gravity immediately sets in, the Reynolds number of the flow increases with speed, and the laminar flow of the water downstream from the tap can transition to turbulent flow. Optical transparency is then reduced or ...
Usually, there is a transition from laminar to turbulent as the plume moves away from its source. This phenomenon can be clearly seen in the rising column of smoke from a cigarette. When high accuracy is required, computational fluid dynamics (CFD) can be employed to simulate plumes, but the results can be sensitive to the turbulence model chosen.
Transition modeling is the use of a model to predict the change from laminar and turbulent flows in fluids and their respective effects on the overall solution. The complexity and lack of understanding of the underlining physics of the problems makes simulating the interaction between laminar and turbulent flow to be difficult and very case specific.