Search results
Results from the WOW.Com Content Network
The multiple valued version of log(z) is a set, but it is easier to write it without braces and using it in formulas follows obvious rules. log(z) is the set of complex numbers v which satisfy e v = z; arg(z) is the set of possible values of the arg function applied to z. When k is any integer:
On the region consisting of complex numbers that are not negative real numbers or 0, the function is the analytic continuation of the natural logarithm. The values on the negative real line can be obtained as limits of values at nearby complex numbers with positive imaginary parts.
The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
In computing, NaN (/ n æ n /), standing for Not a Number, is a particular value of a numeric data type (often a floating-point number) which is undefined as a number, such as the result of 0/0. Systematic use of NaNs was introduced by the IEEE 754 floating-point standard in 1985, along with the representation of other non-finite quantities ...
A barrier function, now, is a continuous approximation g to c that tends to infinity as x approaches b from above. Using such a function, a new optimization problem is formulated, viz. minimize f(x) + μ g(x) where μ > 0 is a free parameter. This problem is not equivalent to the original, but as μ approaches zero, it becomes an ever-better ...
In mathematics, the term undefined refers to a value, function, or other expression that cannot be assigned a meaning within a specific formal system. [ 1 ] Attempting to assign or use an undefined value within a particular formal system, may produce contradictory or meaningless results within that system.
For a function of several real variables, a point P (that is a set of values for the input variables, which is viewed as a point in ) is critical if it is a point where the gradient is zero or undefined. [5] The critical values are the values of the function at the critical points.
For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.