enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    Because matrix equations with triangular matrices are easier to solve, they are very important in numerical analysis. By the LU decomposition algorithm, an invertible matrix may be written as the product of a lower triangular matrix L and an upper triangular matrix U if and only if all its leading principal minors are non-zero.

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The second equation follows from the fact that the determinant of a triangular matrix is simply the product of its diagonal entries, and that the determinant of a permutation matrix is equal to (−1) S where S is the number of row exchanges in the decomposition.

  4. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    One can always write = where V is a real orthogonal matrix, is the transpose of V, and S is a block upper triangular matrix called the real Schur form. The blocks on the diagonal of S are of size 1×1 (in which case they represent real eigenvalues) or 2×2 (in which case they are derived from complex conjugate eigenvalue pairs).

  5. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  6. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    of a permutation matrix (which has exactly a single in each column, and otherwise zeros), a lower triangular matrix and an upper triangular matrix . The determinants of the two triangular matrices L {\displaystyle L} and U {\displaystyle U} can be quickly calculated, since they are the products of the respective diagonal entries.

  7. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    Every complex-valued square matrix , regardless of diagonalizability, has a Schur decomposition given by = where is upper triangular and is unitary (meaning =). The eigenvalues of A {\displaystyle A} are exactly the diagonal entries of U {\displaystyle U} ; if at most one of them is zero, then the following is a square root [ 7 ]

  8. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The Jordan normal form is the most convenient for computation of the matrix functions (though it may be not the best choice for computer computations). Let f(z) be an analytical function of a complex argument. Applying the function on a n×n Jordan block J with eigenvalue λ results in an upper triangular matrix:

  9. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    A matrix whose elements above the main diagonal are all zero is called a lower triangular matrix, while a matrix whose elements below the main diagonal are all zero is called an upper triangular matrix. As with diagonal matrices, the eigenvalues of triangular matrices are the elements of the main diagonal.