enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Triangular matrix - Wikipedia

    en.wikipedia.org/wiki/Triangular_matrix

    The inverse of an upper triangular matrix, if it exists, is upper triangular. The product of an upper triangular matrix and a scalar is upper triangular. Together these facts mean that the upper triangular matrices form a subalgebra of the associative algebra of square matrices for a given size.

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix multiplication and matrix decomposition). The product sometimes includes a permutation matrix as well.

  4. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The Jordan normal form is the most convenient for computation of the matrix functions (though it may be not the best choice for computer computations). Let f(z) be an analytical function of a complex argument. Applying the function on a n×n Jordan block J with eigenvalue λ results in an upper triangular matrix:

  5. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    One can always write = where V is a real orthogonal matrix, is the transpose of V, and S is a block upper triangular matrix called the real Schur form. The blocks on the diagonal of S are of size 1×1 (in which case they represent real eigenvalues) or 2×2 (in which case they are derived from complex conjugate eigenvalue pairs).

  6. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    of a permutation matrix (which has exactly a single in each column, and otherwise zeros), a lower triangular matrix and an upper triangular matrix . The determinants of the two triangular matrices L {\displaystyle L} and U {\displaystyle U} can be quickly calculated, since they are the products of the respective diagonal entries.

  7. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  8. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Using these operations, any matrix can be transformed to a lower (or upper) triangular matrix, and for such matrices, the determinant equals the product of the entries on the main diagonal; this provides a method to calculate the determinant of any matrix.

  9. Crout matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Crout_matrix_decomposition

    In linear algebra, the Crout matrix decomposition is an LU decomposition which decomposes a matrix into a lower triangular matrix (L), an upper triangular matrix (U) and, although not always needed, a permutation matrix (P). It was developed by Prescott Durand Crout. [1] The Crout matrix decomposition algorithm differs slightly from the ...