enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr or 3 σ, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean ...

  3. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    In many practical applications, the true value of σ is unknown. As a result, we need to use a distribution that takes into account that spread of possible σ's. When the true underlying distribution is known to be Gaussian, although with unknown σ, then the resulting estimated distribution follows the Student t-distribution.

  4. Uncertainty - Wikipedia

    en.wikipedia.org/wiki/Uncertainty

    In economics, in 1921 Frank Knight distinguished uncertainty from risk with uncertainty being lack of knowledge which is immeasurable and impossible to calculate. Because of the absence of clearly defined statistics in most economic decisions where people face uncertainty, he believed that we cannot measure probabilities in such cases; this is ...

  5. Minimax estimator - Wikipedia

    en.wikipedia.org/wiki/Minimax_estimator

    An example is shown on the left. The parameter space has just two elements and each point on the graph corresponds to the risk of a decision rule: the x-coordinate is the risk when the parameter is and the y-coordinate is the risk when the parameter is . In this decision problem, the minimax estimator lies on a line segment connecting two ...

  6. Bayes estimator - Wikipedia

    en.wikipedia.org/wiki/Bayes_estimator

    The Bayes risk of ^ is defined as ((, ^)), where the expectation is taken over the probability distribution of : this defines the risk function as a function of ^. An estimator θ ^ {\displaystyle {\widehat {\theta }}} is said to be a Bayes estimator if it minimizes the Bayes risk among all estimators.

  7. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.

  8. Process capability index - Wikipedia

    en.wikipedia.org/wiki/Process_capability_index

    If the upper and lower specification limits of the process are USL and LSL, the target process mean is T, the estimated mean of the process is ^ and the estimated variability of the process (expressed as a standard deviation) is ^, then commonly accepted process capability indices include:

  9. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".