enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_problems

    Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer.

  3. Hilbert's seventh problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_seventh_problem

    Hilbert's seventh problem is one of David Hilbert's list of open mathematical problems posed in 1900. It concerns the irrationality and transcendence of certain numbers ( Irrationalität und Transzendenz bestimmter Zahlen ).

  4. Hilbert's seventeenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_seventeenth_problem

    In 1888, Hilbert showed that every non-negative homogeneous polynomial in n variables and degree 2d can be represented as sum of squares of other polynomials if and only if either (a) n = 2 or (b) 2d = 2 or (c) n = 3 and 2d = 4. [2] Hilbert's proof did not exhibit any explicit counterexample: only in 1967 the first explicit counterexample was ...

  5. Hilbert–Arnold problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Arnold_problem

    In mathematics, particularly in dynamical systems, the Hilbert–Arnold problem is an unsolved problem concerning the estimation of limit cycles.It asks whether in a generic [disambiguation needed] finite-parameter family of smooth vector fields on a sphere with a compact parameter base, the number of limit cycles is uniformly bounded across all parameter values.

  6. Category:Hilbert's problems - Wikipedia

    en.wikipedia.org/wiki/Category:Hilbert's_problems

    Pages in category "Hilbert's problems" The following 35 pages are in this category, out of 35 total. ... Hilbert's seventh problem; Hilbert's eighth problem;

  7. Hilbert's thirteenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_thirteenth_problem

    Hilbert's thirteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It entails proving whether a solution exists for all 7th-degree equations using algebraic (variant: continuous ) functions of two arguments .

  8. Hilbert's program - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_program

    Hilbert proposed that the consistency of more complicated systems, such as real analysis, could be proven in terms of simpler systems. Ultimately, the consistency of all of mathematics could be reduced to basic arithmetic. Gödel's incompleteness theorems, published in 1931, showed that Hilbert's program was unattainable for key areas of ...

  9. Riemann–Hilbert problem - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hilbert_problem

    The work of Bridgeland Bridgeland (2019) studies a class of Riemann-Hilbert problems coming from Donaldson-Thomas theory and makes connections with Gromov-Witten theory and exact WKB. The numerical analysis of Riemann–Hilbert problems can provide an effective way for numerically solving integrable PDEs (see e.g. Trogdon & Olver (2016)).