enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kolmogorov–Smirnov test - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov–Smirnov_test

    Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.

  3. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    1: Normality test: sample size between 3 and 5000 [16] Kolmogorov–Smirnov test: interval: 1: Normality test: distribution parameters known [16] Shapiro-Francia test: interval: univariate: 1: Normality test: Simpliplification of Shapiro–Wilk test Lilliefors test: interval: 1: Normality test

  4. Kolmogorov's theorem - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_theorem

    Kolmogorov's theorem is any of several different results by Andrey Kolmogorov: In statistics. Kolmogorov–Smirnov test; In probability theory. Hahn–Kolmogorov theorem; Kolmogorov extension theorem; Kolmogorov continuity theorem; Kolmogorov's three-series theorem; Kolmogorov's zero–one law; Chapman–Kolmogorov equations; Kolmogorov ...

  5. Probability axioms - Wikipedia

    en.wikipedia.org/wiki/Probability_axioms

    The standard probability axioms are the foundations of probability theory introduced by Russian mathematician Andrey Kolmogorov in 1933. [1] These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-world probability cases. [2] There are several other (equivalent) approaches to formalising ...

  6. Lilliefors test - Wikipedia

    en.wikipedia.org/wiki/Lilliefors_test

    Lilliefors test is a normality test based on the Kolmogorov–Smirnov test.It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify which normal distribution; i.e., it does not specify the expected value and variance of the distribution. [1]

  7. Kolmogorov's two-series theorem - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_Two-Series...

    In probability theory, Kolmogorov's two-series theorem is a result about the convergence of random series. It follows from Kolmogorov's inequality and is used in one proof of the strong law of large numbers .

  8. Kolmogorov's three-series theorem - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_three-series...

    In probability theory, Kolmogorov's Three-Series Theorem, named after Andrey Kolmogorov, gives a criterion for the almost sure convergence of an infinite series of random variables in terms of the convergence of three different series involving properties of their probability distributions.

  9. Kolmogorov's zero–one law - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_zero–one_law

    Kolmogorov's zero–one law asserts that, if the F n are stochastically independent, then for any event (()), one has either P(E) = 0 or P(E)=1. The statement of the law in terms of random variables is obtained from the latter by taking each F n to be the σ-algebra generated by the random variable X n .

  1. Related searches kolmogorov statistics test bank 1 4 2 maka x adalah

    1/4 divided by 2