Search results
Results from the WOW.Com Content Network
Plackett–Burman designs are experimental designs presented in 1946 by Robin L. Plackett and J. P. Burman while working in the British Ministry of Supply. [1] Their goal was to find experimental designs for investigating the dependence of some measured quantity on a number of independent variables (factors), each taking L levels, in such a way as to minimize the variance of the estimates of ...
The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...
The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.
Such optimal probability-measure designs solve a mathematical problem that neglected to specify the cost of observations and experimental runs. Nonetheless, such optimal probability-measure designs can be discretized to furnish approximately optimal designs. [32] In some cases, a finite set of observation-locations suffices to support an ...
In probability theory and statistics, the empirical probability, relative frequency, or experimental probability of an event is the ratio of the number of outcomes in which a specified event occurs to the total number of trials, [1] i.e. by means not of a theoretical sample space but of an actual experiment.
[6] [8] Let the probability distribution function of the yield strength be given as (). Similarly, the applied load or predicted load can also only be known to a certain precision, and the range of stress which the material will undergo is unknown as well. Let this probability distribution be given as ().
In probability theory, an experiment or trial (see below) is any procedure that can be infinitely repeated and has a well-defined set of possible outcomes, known as the sample space. [1] An experiment is said to be random if it has more than one possible outcome, and deterministic if it has only one.
That is, g(r) = 1. (In practice, it would be more appropriate to assume a prior distribution which is much more heavily weighted in the region around 0.5, to reflect our experience with real coins.) The probability of obtaining h heads in N tosses of a coin with a probability of heads equal to r is given by the binomial distribution: