enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Piecewise function - Wikipedia

    en.wikipedia.org/wiki/Piecewise_function

    Terms like piecewise linear, piecewise smooth, piecewise continuous, and others are very common. The meaning of a function being piecewise P {\displaystyle P} , for a property P {\displaystyle P} is roughly that the domain of the function can be partitioned into pieces on which the property P {\displaystyle P} holds, but is used slightly ...

  3. Piecewise property - Wikipedia

    en.wikipedia.org/wiki/Piecewise_property

    A function property holds piecewise for a function, if the function can be piecewise-defined in a way that the property holds for every subdomain. Examples of functions with such piecewise properties are: Piecewise constant function, also known as a step function; Piecewise linear function; Piecewise continuous function

  4. Piecewise linear function - Wikipedia

    en.wikipedia.org/wiki/Piecewise_linear_function

    A piecewise linear function is a function defined on a (possibly unbounded) interval of real numbers, such that there is a collection of intervals on each of which the function is an affine function. (Thus "piecewise linear" is actually defined to mean "piecewise affine".)

  5. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  6. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    Linear interpolation on a data set (red points) consists of pieces of linear interpolants (blue lines). Linear interpolation on a set of data points (x 0, y 0), (x 1, y 1), ..., (x n, y n) is defined as piecewise linear, resulting from the concatenation of linear segment interpolants between each pair of data points.

  7. Inscribed square problem - Wikipedia

    en.wikipedia.org/wiki/Inscribed_square_problem

    The inscribed square problem, also known as the square peg problem or the Toeplitz' conjecture, is an unsolved question in geometry: Does every plane simple closed curve contain all four vertices of some square? This is true if the curve is convex or piecewise smooth and in other special cases. The problem was proposed by Otto Toeplitz in 1911. [1]

  8. Talk:Piecewise function - Wikipedia

    en.wikipedia.org/wiki/Talk:Piecewise_function

    It is useful to do this, for example to make a sawtooth function. That is an example of a piecewise linear function: its graph is made up of a number of parts of the graphs of linear functions. Problems can arise at the ends of the intervals used for separate definitions. We must give a definite value for f(x) there, as everywhere else.

  9. Schoenflies problem - Wikipedia

    en.wikipedia.org/wiki/Schoenflies_problem

    By the piecewise linear Jordan–Schoenflies theorem, there is a piecewise linear homeomorphism, affine on an appropriate triangulation of the interior of the polygon, taking the polygon onto a triangle. Take an interior point P in one of the small triangles of the triangulation. It corresponds to a point Q in the image triangle.