enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. g-factor (physics) - Wikipedia

    en.wikipedia.org/wiki/G-factor_(physics)

    The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).

  3. Landé g-factor - Wikipedia

    en.wikipedia.org/wiki/Landé_g-factor

    In atomic physics, the Landé g-factor is a multiplicative term appearing in the expression for the energy levels of an atom in a weak magnetic field. The quantum states of electrons in atomic orbitals are normally degenerate in energy , with these degenerate states all sharing the same angular momentum.

  4. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The gravitational constant appears in the Einstein field equations of general relativity, [4] [5] + =, where G μν is the Einstein tensor (not the gravitational constant despite the use of G), Λ is the cosmological constant, g μν is the metric tensor, T μν is the stress–energy tensor, and κ is the Einstein gravitational constant, a ...

  5. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on a wall in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.

  6. Gyromagnetic ratio - Wikipedia

    en.wikipedia.org/wiki/Gyromagnetic_ratio

    In both cases a 4-spinor is obtained and for both linearizations the g-factor is found to be equal to 2. Therefore, the factor 2 is a consequence of the minimal coupling and of the fact of having the same order of derivatives for space and time. [8] Physical spin-⁠ 1 / 2 ⁠ particles which cannot be described by the linear gauged Dirac ...

  7. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them: [11] Diagram of two masses attracting one another = where F is the force between the masses; G is the Newtonian constant of gravitation (6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2);

  8. Pauli equation - Wikipedia

    en.wikipedia.org/wiki/Pauli_equation

    Pauli's equation is derived by requiring minimal coupling, which provides a g-factor g=2. Most elementary particles have anomalous g-factors, different from 2. In the domain of relativistic quantum field theory, one defines a non-minimal coupling, sometimes called Pauli coupling, in order to add an anomalous factor

  9. List of common physics notations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_physics...

    newton meter squared per kilogram squared (N⋅m 2 /kg 2) shear modulus: pascal (Pa) or newton per square meter (N/m 2) acceleration due to gravity: meters per second squared (m/s 2), or equivalently, newtons per kilogram (N/kg) magnetic field strength: ampere per meter (A/m) Hamiltonian: joule (J)